4,数列极限的定义及其性质、极限的算术运算、夹逼原理、Cauchy列、Cauchy准则、Weierstrass定理、自然对数底e、Bolzano -Weierstrass定理,数列的上下极限。
评分2,Leibniz级数、Abel判别法、Dirichlet判别法、级数的重排、Riemann定理、Mertens定理、二重级数、二重级数与累次级数之间的关系、二重绝对收敛级数的重排、无穷乘积、无穷乘积收敛的必要条件、无穷乘积的绝对收敛、Euler公式。
评分儿子教材
评分3,闭区间套定理、有限覆盖定理、极限点定理、可数集、Cantor定理。
评分10,函数单调性的条件、函数的内极值点、Young不等式、Holder不等式、Minkowski不等式、凸函数、Jensen不等式、函数作图
评分3,函数列的收敛集、含参变量的函数族、收敛与一致收敛、Cauchy准则、复数域的收敛与复数项级数、幂级数、Cauchy-Hadamard公式、 Abel定理、函数的幂级数表示、幂级数的解析性、Weierstrass优级数判别法、Abel-Dirichlet判别法。
评分10,函数单调性的条件、函数的内极值点、Young不等式、Holder不等式、Minkowski不等式、凸函数、Jensen不等式、函数作图
评分中山大学崔尚斌教授最新的数序分析教材,很有现代气息,值得一读。教材对传统数学分析教材的编排做了一些与时俱进的改革,内容做了适当缩减和增补,除了如传统教材一样重视对基础知识和基本技巧的传授外,也增加了一些分析学的新内容。封面美观,印刷精美,很好。例题和习题比较多,证明过程也很详细,内容丰富。全书分为实数域和初等函数、数列的极限、函数的极限和连续性、 函数的导数、导数的应用、不定积分、定积分、定积分的应用、广义积分、无穷级数、函数序列和函数级数、幂级数、傅里叶级数、多元函数的极限和连续性、多元数量函数的微分学、多元向量函数的微分学、多元函数的极值、含参变量的积分、重积分、曲线积分和曲面积分、广义重积分和含参量的重积分、场论初步、微分形式和斯托克斯公式23章,每册书后面有综合习题吗,难度较大,非常精美。本书是作者根据多年讲授数学分析课程的经验,在对部分讲稿进行整理和扩充的基础上编写而成的。读者对象主要为综合性大学数学类各专业的本科生,也适用于师范院校、工科院校数学类各专业的本科生。此外,也可用作运用微积分知识比较多的其他专业,如力学、理论物理、气象等专业的本科生学习数学分析和高等数学课程的参考书。考虑到我国改革开放30多年来中学教育水平己大幅度提高,因而大学新生都已有相当好的中学数学知识,我们对传统数学分析教材的编排做了一些改革,内容做了适当缩减和增补。大力推荐!!!
评分5,Heine归结原理、极限的算术运算、滤子极限、Cauchy准则、复合函数与单调函数的极限、无穷大与无穷小量及其阶。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有