拓扑学是和传统几何密切相关的一门重要学科,也可以视为一种“柔性”的几何学, 也是所有几何学的研究基础。拓扑学研究始于欧拉,经由庞加莱等人的研究发展,逐渐成为比较成熟的数学分支和活跃的研究方向。拓扑学思想是数学思想中极为关键的内容。它讨论了刻画几何物体最基本的一些特征,比如亏格(洞眼个数)等等 。由此发展出了同调论、同伦论等等基础性的理论。
评分哪些几何概念是内蕴性质的?这是当时最重要的理论问题。高斯发现了曲面的曲率(即反映弯曲程度的量)竟然是内蕴的---尽管它的原始定义看上去和所处的大空间位置有关。这个重要发现就称为高斯绝妙定理。古典几何的另一个重要发现就是高斯-博纳特公式,它反映了曲率和弯曲空间里的三角形三角之和的关系。
评分总体上说,上述的几何都是在欧氏空间的几何结构--即平坦的空间结构--背景下考察,而没有真正关注弯曲空间下的几何结构。欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何, 即“非欧几何”。非欧几何中包括了最经典几类几何学课题, 比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内, 人们开始考虑射影几何。
评分孩子很喜欢,还会再来
评分孩子很喜欢,还会再来
评分其他的几何学科
评分《别莱利曼的趣味科学——七天玩转趣味几何》一书不仅是为爱好数学的人而写的,也是为那些还没有发现数学上许多引人入胜的东西的读者写的。许多读者曾在学校里学过几何学,但并不习惯去注意在我们周围世界里各种事物常见的几何关系,不会把学到的几何学知识应用到实际方面去,不知道在生活中间遇到困难的时候、在郊游或露营的时候应用学到的几何学知识。作者把几何学从学校教室的围墙里、从科学的“围城”中,引到户外去,到树林里、到原野上、到河边、到路上,在那里摆脱教科书和函数表,无拘无束地活学活用几何,用几何知识重新认识美丽的世界。别莱利曼 译者:王艳别莱利曼(1882-1942),诞生于俄国格罗德省别洛斯托克市。享誉世界的科普名家,真正意义上的学者,趣味科学的奠基人。1913~1916年完成《趣味物理学》,这为他后来完成一系列趣味科学读物奠定了基础。他的作品从1918年至1973年仅在俄罗斯就出版449次,总印数达1300万之多,还被翻译成数十种语言,在全世界出版发行。俄罗斯著名科学家、火箭技术先驱者之一格卢什科称别莱利曼是“数学的歌手、物理学的乐师、天文学的诗人、宇航学的司仪”。
评分最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
评分在那二十几个夜晚,有只老鼠老爱泡在我的书房里。它躲在黑乎乎的书桌角落里不时制造点事端,抑或在我的书架附近不时搞点小动作。就算你是只学究鼠,我也要让你来日无多,永享幽静!
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有