《完全交上的孤立奇点(第2版)(英文版)》的目的是提供给读者复空间奇点尤其是完全交上的奇点的介绍,所需的预备知识为代数几何、解析几何、代数拓扑一些知识、另外还需了解Stein空间的一些结论,可供代数几何、复解析几何和微分分析方面的研究生和相关研究人员参考。
评分学习参考书,希望有帮助。
评分不错不错不错不错不错不错不错不错
评分不错不错不错不错不错不错不错不错
评分挺好的,大师著作值得收藏
评分觉得该买一些书了,所以选择京东,配送快
评分挺好 大部分是讲群论 后面有一小部分讲了特征标与群论的关系 还是值得买的
评分正版的,非常值,快递也给力,必须给好评,就是感觉包装有点简陋啊哈哈不过书很好,看了下内容也都很不错,快递也很给力,东西很好物流速度也很快,和照片描述的也一样,给个满分吧下次还会来买。代数几何是数学的一个分支,正如它的名字所暗示的,代数几何将抽象代数, 特别是交换代数,同几何结合起来。 它可以被认为是对代数方程系统的解集的研究。代数几何以代数簇为研究对象。代数簇是由空间坐标的一个或多个代数方程所确定的点的轨迹。例如,三维空间中的代数簇就是代数曲线与代数曲面。代数几何研究一般代数曲线与代数曲面的几何性质。在多复变函数论、拓扑学、微分方程论和数论中都有应用。现代数学的一个重要分支学科。它的基本研究对象是在任意维数的(仿射或射影)空间中,由若干个代数方程的公共零点所构成的集合的几何特性。这样的集合通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组。代数几何是数学的一个分支,代数几何是将抽象代数, 特别是交换代数,同几何结合起来。 它可以被认为是对代数方程系统的解集的研究。代数几何以代数簇为研究对象。代数簇是由空间坐标的一个或多个代数方程所确定的点的轨迹。例如,三维空间中的代数簇就是代数曲线与代数曲面。代数几何研究一般代数曲线与代数曲面的几何性质。在多复变函数论、拓扑学、微分方程论和数论中都有应用。
评分内容很好,快递相对较快,包装很完整。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有