【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构

【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-27

图书介绍


店铺: 兴阅图书专营店
出版社: 电子工业出版社
ISBN:9787121314384Y
商品编码:13366825779
出版时间:2016-01-01


类似图书 点击查看全场最低价

相关图书





图书描述


商品参数

书名:大数据之路:阿*巴巴大数据实践

作者:阿*巴巴数据技术及产品部著 

ISBN :9787121314384

出版社:电子工业出版社

出版时间:2017年7月

印刷时间:2017年7月

字数:字

页数:322页

开本:16开

包装:平装

重量:g

定价:79元

内容简介

在阿*巴巴集团内,数据人员面临的现实情况是:集团数据存储已经达到EB*别,部分单张表每天的数据记录数高达几千亿条;在2016年“**购物狂欢节”的24小时中,支付金额达到了1207亿元人民币,支付峰值高达12万笔/秒,下单峰值达17.5万笔/秒,媒体直播大屏处理的总数据量高达百亿*别且所有数据都需要做到实时、准确地对外披露……巨大的信息量给数据采集、存储和计算都带来了极大的挑战。

《大数据之路:阿*巴巴大数据实践》就是在此背景下完成的。本书中讲到的阿*巴巴大数据系统架构,就是为了满足不断变化的业务需求,同时实现系统的高度扩展性、灵活性以及数据展现的高性能而设计的。

本书由阿*巴巴数据技术及产品部组织并完成写作,是阿*巴巴分享对大数据的认知,与生态伙伴共创数据智能的重要基石。相信本书中的实践和思考对同行会有很大的启发和借鉴意义。

编辑推荐

阿*巴巴,作为距离大数据*近的公司之一,近几年对大数据却鲜有高谈阔论。实际上,阿*巴巴一开始就自然生长在数据的黑洞中,并且被越来越多、越来越密集的数据风暴裹挟。从需求→设计→迭代→升华为理论,在无数次的迭代进化中,阿*巴巴对大数据的理解才逐渐成形,慢慢能够在将数据黑洞为我所用的抗争中扳回一局。本书就是在这个过程中,由阿*巴巴数据技术及产品部沉淀下来的大数据知识与实践,值得每一位与大数据相关的人阅读。

作者简介

阿*巴巴数据技术及产品部,定位于阿*集团数据中台,为阿*生态内外的业务、用户、中小企业提供全链路、全渠道的数据服务。作为阿*大数据战略的核心践行者,致力于“让大数据赋能商业,创造价值”。经过多年的实践,数据技术及产品部已经构建了从底层的数据采集、数据处理,到挖掘算法、数据应用服务以及数据产品的全链路、标准化的大数据体系。通过这个体系,超过EB*别的海量数据能够**融合,并以秒*的响应速度,服务并驱动阿*巴巴自身的业务和外部千万用户的发展。现在,阿*巴巴数据技术及产品部正通过技术和产品上的创新,探索全域数据的价值,将阿*在大数据上沉淀的能力对外分享,为各行各业的发展带来更多可能性。

目录

第1章  总述1

第1篇  数据技术篇

第2章  日志采集 8

2.1  浏览器的页面日志采集 8

2.1.1  页面浏览日志采集流程 9

2.1.2  页面交互日志采集 14

2.1.3  页面日志的服务器端清洗和预处理 15

2.2  无线客户端的日志采集 16

2.2.1  页面事件 17

2.2.2  控件点击及其他事件 18

2.2.3  特殊场景 19

2.2.4  H5 & Native日志统一 20

2.2.5  设备标识 22

2.2.6  日志传输 23

2.3  日志采集的挑战 24

2.3.1  典型场景 24

2.3.2  大促保障 26

第3章  数据同步 29

3.1  数据同步基础 29

3.1.1  直连同步 30

3.1.2  数据文件同步 30

3.1.3  数据库日志解析同步 31

3.2  阿*数据仓库的同步方式35

3.2.1  批量数据同步 35

3.2.2  实时数据同步 37

3.3  数据同步遇到的问题与解决方案 39

3.3.1  分库分表的处理 39

3.3.2  **同步和批量同步41

3.3.3  增量与全量同步的合并 42

3.3.4  同步性能的处理 43

3.3.5  数据漂移的处理 45

第4章  离线数据开发 48

4.1  数据开发平台 48

4.1.1  统一计算平台 49

4.1.2  统一开发平台 53

4.2  任务调度系统 58

4.2.1  背景 58

4.2.2  介绍 60

4.2.3  特点及应用 65

第5章  实时技术 68

5.1  简介 69

5.2  流式技术架构 71

5.2.1  数据采集 72

5.2.2  数据处理 74

5.2.3  数据存储 78

5.2.4  数据服务 80

5.3  流式数据模型 80

5.3.1  数据分层 80

5.3.2  多流关联 83

5.3.3  维表使用 84

5.4  大促挑战&保障 86

5.4.1  大促特征 86

5.4.2  大促保障 88

第6章  数据服务 91

6.1  服务架构演进 91

6.1.1  DWSOA 92

6.1.2  OpenAPI 93

6.1.3  SmartDQ 94

6.1.4  统一的数据服务层 96

6.2  技术架构 97

6.2.1  SmartDQ 97

6.2.2  iPush 100

6.2.3  Lego 101

6.2.4  uTiming 102

6.3  *佳实践103

6.3.1  性能 103

6.3.2  稳定性 111

第7章  数据挖掘 116

7.1  数据挖掘概述 116

7.2  数据挖掘算法平台 117

7.3  数据挖掘中台体系 119

7.3.1  挖掘数据中台 120

7.3.2  挖掘算法中台 122

7.4  数据挖掘案例 123

7.4.1  用户画像 123

7.4.2  互联网反作弊 125

第2篇  数据模型篇

第8章  大数据领域建模综述 130

8.1  为什么需要数据建模 130

8.2  关系数据库系统和数据仓库 131

8.3  从OLTP和OLAP系统的区别看模型方法论的选择 132

8.4  典型的数据仓库建模方法论 132

8.4.1  ER模型 132

8.4.2  维度模型 133

8.4.3  Data Vault模型 134

8.4.4  Anchor模型 135

8.5  阿*巴巴数据模型实践综述136

第9章  阿*巴巴数据整合及管理体系138

9.1  概述 138

9.1.1  定位及价值 139

9.1.2  体系架构 139

9.2  规范定义 140

9.2.1  名词术语 141

9.2.2  指标体系 141

9.3  模型设计 148

9.3.1  指导理论 148

9.3.2  模型层次 148

9.3.3  基本原则 150

9.4  模型实施 152

9.4.1  业界常用的模型实施过程 152

9.4.2  OneData实施过程 154

第10章  维度设计 159

10.1  维度设计基础 159

10.1.1  维度的基本概念 159

10.1.2  维度的基本设计方法 160

10.1.3  维度的层次结构 162

10.1.4  规范化和反规范化 163

10.1.5  一致性维度和交叉探查 165

10.2  维度设计高*主题166

10.2.1  维度整合 166

10.2.2  水平拆分 169

10.2.3  垂直拆分 170

10.2.4  历史归档 171

10.3  维度变化 172

10.3.1  缓慢变化维 172

10.3.2  快照维表 174

10.3.3  极限存储 175

10.3.4  微型维度 178

10.4  特殊维度 180

10.4.1  递归层次 180

10.4.2  行为维度 184

10.4.3  多值维度 185

10.4.4  多值属性 187

10.4.5  杂项维度 188

第11章  事实表设计 190

11.1  事实表基础 190

11.1.1  事实表特性 190

11.1.2  事实表设计原则 191

11.1.3  事实表设计方法 193

11.2  事务事实表 196

11.2.1  设计过程 196

11.2.2  单事务事实表 200

11.2.3  多事务事实表 202

11.2.4  两种事实表对比 206

11.2.5  父子事实的处理方式 208

11.2.6  事实的设计准则 209

11.3  周期快照事实表 210

11.3.1  特性 211

11.3.2  实例 212

11.3.3  注意事项 217

11.4  累积快照事实表 218

11.4.1  设计过程 218

11.4.2  特点 221

11.4.3  特殊处理 223

11.4.4  物理实现 225

11.5  三种事实表的比较 227

11.6  无事实的事实表 228

11.7  聚集型事实表 228

11.7.1  聚集的基本原则 229

11.7.2  聚集的基本步骤 229

11.7.3  阿*公共汇总层230

11.7.4  聚集补充说明 234

第3篇  数据管理篇

第12章  元数据 236

12.1  元数据概述 236

12.1.1  元数据定义 236

12.1.2  元数据价值 237

12.1.3  统一元数据体系建设 238

12.2  元数据应用 239

12.2.1  Data Profile 239

12.2.2  元数据门户 241

12.2.3  应用链路分析 241

12.2.4  数据建模 242

12.2.5  驱动ETL开发 243

第13章  计算管理 245

13.1  系统优化 245

13.1.1  HBO 246

13.1.2  CBO 249

13.2  任务优化 256

13.2.1  Map倾斜 257

13.2.2  Join倾斜 261

13.2.3  Reduce倾斜 269

第14章  存储和成本管理 275

14.1  数据压缩 275

14.2  数据重分布 276

14.3  存储治理项优化 277

14.4  生命周期管理 278

14.4.1  生命周期管理策略 278

14.4.2  通用的生命周期管理矩阵 280

14.5  数据成本计量 283

14.6  数据使用计费 284

第15章  数据质量 285

15.1  数据质量保障原则 285

15.2  数据质量方法概述 287

15.2.1  消费场景知晓 289

15.2.2  数据加工过程卡点校验 292

15.2.3  风险点监控 295

15.2.4  质量衡量 299

第4篇  数据应用篇

第16章  数据应用 304

16.1  生意参谋 305

16.1.1  背景概述 305

16.1.2  功能架构与技术能力 307

16.1.3  商家应用实践 310

16.2  对内数据产品平台 313

16.2.1  定位 313

16.2.2  产品建设历程 314

16.2.3  整体架构介绍 317

附录A  本书插图索引 320


【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构 下载 mobi epub pdf txt 电子书 格式

【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构 下载 mobi pdf epub txt 电子书 格式 2024

【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

3)不包邮,售后麻烦

评分

翻了一遍,还可以

评分

3)不包邮,售后麻烦

评分

要好好学习一下

评分

不学习就是落后,提高业务水平吧,发票要是能一起送到就好了。

评分

书的质量是没什么问题,但是

评分

了解一下了解一下

评分

写的不错,很实用,调理很清晰!多对学习!!

评分

1)发货慢

类似图书 点击查看全场最低价

【正版包邮】大数据之路:阿里巴巴大数据实践 全面系统介绍阿里巴巴大数据系统结构 mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有