破解SAT考試 數學2(第2版)Cracking the SAT Subject Test

破解SAT考試 數學2(第2版)Cracking the SAT Subject Test pdf epub mobi txt 電子書 下載 2025

普林斯頓谘詢 ThePrincetonReview 著
圖書標籤:
  • SAT數學
  • SAT科目考試
  • 數學2
  • 備考指南
  • 考試技巧
  • 練習題
  • 真題
  • Cracking the SAT
  • Barron's
  • 高中數學
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 中華商務進口圖書旗艦店
齣版社: 普林斯頓谘詢 ThePrincetonReview
ISBN:9781524710804
商品編碼:22312468567
包裝:平裝
開本:大16開
齣版時間:2017-12-12
用紙:輕型紙
頁數:496
正文語種:英語

具體描述

破解SAT考試 數學2(第2版)Cracking the SAT Subject Test in Math 2 2nd Edition
圖書信息
Series: College Test PreparationPaperback: 496 pagesPublisher: Princeton Review; 2 edition (December 12, 2017)Language: EnglishISBN-10: 1524710806ISBN-13: 978-1524710804Product Dimensions: 213 x 276 x 27.94mm | 771.11gShipping Weight: 1.7 pounds
內容簡介
EVERYTHING YOU NEED TO HELP SCORE A PERFECT 800. Equip yourself to ace the SAT Subject Test in Math 2 with The Princeton Review's comprehensive study guide—including 3 full-length practice tests, thorough reviews of key topics, and targeted strategies for every question type.
We don't have to tell you how tough SAT Math is—or how helpful a stellar exam score can be for your chances of getting into your top-choice college. Written by the experts at The Princeton Review, Cracking the SAT Subject Test in Math 2 arms you to take on the test and achieve your highest score.
Techniques That Actually Work.1 Tried-and-true tactics to help you avoid traps and beat the test2 Tips for pacing yourself and guessing logically3 Essential strategies to help you work smarter, not harder
Everything You Need to Know for a High Score.1 Expert subject reviews for every test topic2 Up-to-date information on the SAT Subject Test in Math 23 Score conversion tables to help you assess your performance and track your progress
Practice Your Way to Perfection.1 3 full-length practice tests (2 in the book and 1 online) with detailed answer explanations2 Practice drills throughout each content chapter3 End-of-chapter summaries to help you master key points
作者簡介
The experts at The Princeton Review have been helping students, parents, and educators achieve the best results at every stage of the education process since 1981. The Princeton Review has helped millions succeed on standardized tests, and provides expert advice and instruction to help parents, teachers, students, and schools navigate the complexities of school admission. In addition to classroom courses in over 40 states and 20 countries, The Princeton Review also offers online and school-based courses, one-to-one and small-group tutoring as well as online services in both admission counseling and academic homework help.
突破重圍:駕馭高等數學的必備指南 書名:《高等數學精講與應用:從理論到實踐的深度解析》 內容簡介: 本書旨在為渴望在數學領域取得突破的學生和專業人士提供一本全麵、深入且高度實用的參考手冊。它並非專注於某一特定標準化考試的應試技巧,而是緻力於構建堅實的高等數學基礎,培養真正的數理思維能力。我們深知,紮實的理論功底纔是應對未來復雜挑戰的關鍵,因此本書的結構設計兼顧瞭理論的嚴謹性與應用的廣泛性。 全書共分為六個主要部分,係統性地涵蓋瞭微積分、綫性代數、概率論與數理統計、常微分方程、離散數學基礎以及應用數學前沿的入門知識。每一章節都經過精心編排,力求在保證內容的深度之餘,保持清晰的邏輯脈絡和易於理解的闡述方式。 第一部分:微積分的深度探索(Calculus Revisited) 本部分是全書的基石,我們超越瞭基礎的求導和積分運算,深入探討瞭微積分背後的核心概念。 極限的嚴謹定義與拓撲基礎: 從 $epsilon-delta$ 語言齣發,係統性地探討瞭序列和函數的極限,並引入瞭初步的拓撲概念,為理解連續性和收斂性打下堅實的基礎。 微分學的高級主題: 不僅包括多元函數的偏導數、梯度、Hessian 矩陣,更側重於泰勒級數的收斂條件、隱函數定理和反函數定理的幾何意義及其在優化問題中的應用。我們詳細分析瞭拉格朗日乘數法在復雜約束條件下的應用案例,如經濟學中的邊際分析模型。 積分學的理論與技巧: 從黎曼積分的嚴格定義到勒貝格積分的初步介紹,使讀者理解積分理論的演進。重點講解瞭反常積分的斂散性判斷、微積分基本定理在物理學(如功、通量計算)中的具體體現,以及麯綫積分、麯麵積分在嚮量場分析中的應用,例如格林公式、斯托剋斯公式和高斯散度定理的詳細推導與實際解算。 第二部分:綫性代數的思維框架(Linear Algebra: Structure and Transformation) 本部分緻力於揭示綫性代數作為描述空間結構和係統變換的強大工具的本質。 嚮量空間與綫性映射: 強調抽象嚮量空間的定義,探討子空間、基與維數的內在聯係。對於綫性映射,我們側重於其核空間(Kernel)和像空間(Image)的性質,以及如何通過矩陣錶示來理解變換的本質。 特徵值與特徵嚮量的深層含義: 不僅停留在計算,而是將其置於動力係統和穩定性分析的背景下。詳細探討瞭相似變換、對角化,以及對於不可對角化矩陣的若爾當標準型(Jordan Canonical Form)的意義,這對於解決高階微分方程組至關重要。 內積空間與正交性: 引入度量概念,講解施密特(Gram-Schmidt)正交化過程,並將其應用於最小二乘法,解決超定方程組的實際問題,例如數據擬閤與迴歸分析中的幾何解釋。 第三部分:概率論與數理統計的決策科學(Probability and Statistical Inference) 本部分旨在培養讀者基於不確定性進行理性決策的能力。 概率論的公理體係: 從概率的公理化定義齣發,深入分析條件概率、貝葉斯定理的推理過程,並探討瞭隨機變量的各種分布(離散與連續)的性質、矩和生成函數。特彆關注中心極限定理(CLT)和強大數定律的實際意義。 統計推斷的核心方法: 涵蓋參數估計(矩估計法、極大似然估計法 MLE 的原理與局限性)、假設檢驗(I 類和 II 類錯誤、P 值和置信區間的構建)。我們詳細介紹瞭 T 檢驗、卡方檢驗以及方差分析(ANOVA)的應用場景,並強調瞭統計模型的選擇與檢驗的重要性。 第四部分:常微分方程的動態建模(Ordinary Differential Equations: Modeling Change) 本部分側重於如何用數學語言描述自然界和社會中不斷變化的過程。 一階與二階 ODE 的精確解法: 除瞭分離變量、積分因子法等基礎技巧,重點解析瞭常係數綫性齊次與非齊次方程的解法,強調瞭特徵方程與係統解的對應關係。 動力係統的穩定性分析: 引入相平麵分析法,探討非綫性係統的極限環、鞍點、結點和霍普夫(Hopf)分岔等定性行為。我們將動力係統理論與流行病學模型(如 SIR 模型)和生態學模型相結閤,展示其強大的預測能力。 第五部分:離散數學與計算思維(Foundations of Discrete Mathematics) 本部分為計算機科學、算法設計與邏輯推理奠定基礎。 集閤論、關係與函數: 從集閤的運算到康托爾的無窮性比較,構建清晰的邏輯體係。 圖論基礎與應用: 詳述連通性、歐拉路、哈密頓迴路、樹結構,並講解最短路徑算法(如 Dijkstra 算法)的基本思想和復雜度分析。 計數原理與組閤構造: 深入探討排列組閤的容斥原理、鴿巢原理,以及生成函數在求解復雜計數問題中的應用。 第六部分:應用數學前沿的瞥見(Glimpses into Applied Mathematics) 本部分作為引導,簡要介紹更高級的主題,激發讀者的進一步探索興趣。 偏微分方程(PDE)入門: 概述熱傳導方程、波動方程和泊鬆方程的基本形式及其在物理中的意義,並簡要介紹有限差分法的基本思路。 數值方法概覽: 介紹數值積分(梯形法則、辛普森法則)和數值求解 ODE(歐拉法、龍格-庫塔法)的原理,強調捨入誤差和截斷誤差的概念。 本書特色: 概念驅動,而非公式堆砌: 我們將每一個數學工具置於其産生的曆史背景和解決的實際問題之中,幫助讀者理解“為什麼是這樣”,而非僅僅記住“是什麼”。 豐富的案例分析: 每一個理論點的闡述後,都附帶有跨學科的、來自工程、物理、經濟或數據科學的真實世界案例,展示數學建模的全過程。 強調邏輯推理: 大量篇幅用於解析證明的關鍵步驟,培養讀者自我構建和驗證數學論點的能力。 本書適閤於高等數學預備課程的學生、希望鞏固和深化微積分及綫性代數知識的理工科高年級學生,以及需要係統性提升數學素養的專業技術人員。掌握本書內容,意味著你將擁有駕馭更復雜數學分支的強大工具箱和清晰的邏輯思維框架。

用戶評價

評分

從排版和印刷質量來看,這本《破解SAT數學2(第2版)》的製作水平,說實話,有些對不起它“20XX年最新版”的宣傳。紙張手感偏薄,油墨的均勻度也存在一些小問題,有些圖錶的綫條不夠銳利,這在處理復雜的幾何圖形和坐標係問題時,極大地影響瞭閱讀體驗。我注意到好幾個圖示中的點和綫幾乎要融為一體,需要我眯著眼睛仔細分辨纔能確定它們的確切位置。更要命的是,書中齣現的幾處排版錯誤,導緻公式的變量混淆。比如在討論概率分布的尾部截斷時,符號 $P$ 和 $X$ 有一處印反瞭,我花瞭近二十分鍾纔意識到是印刷錯誤,而不是自己理解齣瞭偏差。這種低級的錯誤在號稱“權威”的備考材料中是絕對不應該齣現的。一本好的教材,應該在每一個細節上都體現齣對讀者的尊重,但這本書記載的細節處理明顯不夠嚴謹,這不禁讓我對其中更深層次的知識點的準確性産生瞭懷疑,後續的學習過程中,我不得不時刻保持警惕,多方查證,這無疑大大降低瞭復習效率。

評分

我對這本書的練習題部分的評價是“虎頭蛇尾”。前三套模擬測試的難度和陷阱設置得還算精妙,確實能讓人感受到SAT考試那種“熟悉的陌生感”,能夠很好地測試考生對不同知識點的綜閤應用能力。然而,一旦進入到後麵的專題強化訓練部分,難度梯度就陡然下降,很多題目直接退化成瞭我們中學期末考試的平均難度水平,幾乎沒有涉及ETS偏愛的那些需要多步邏輯推理的“陷阱題”。例如,在對數函數和指數函數的綜閤應用題中,書裏給齣的所有題目都可以通過簡單的代數替換解決,完全沒有考察對函數圖像變換或者極限思想在實際問題中的應用。這讓我感到非常睏惑:如果這本書的目的是“破解”SAT,那麼它應該側重於那些高區分度的題目。但它似乎更傾嚮於用大量的簡單題來堆砌頁數,營造齣“內容豐富”的假象。這種內容安排,對於渴望衝刺滿分的考生來說,是一種時間的浪費,因為他們需要花大量時間在那些不需要額外練習的低端內容上。

評分

這本號稱“破解”SAT數學2的秘籍,老實說,我拿到手的時候內心是充滿期待的,畢竟目標是那個傳說中“高分”的境界。然而,在實際翻閱的過程中,我很快意識到,這可能更像是一本“溫和提醒”指南,而不是什麼能讓人一步登天的“武林秘籍”。書裏的內容,坦白講,更像是把ETS官方指南裏那些晦澀的數學概念,用稍微白話一點的方式重新排列組閤瞭一遍。比如對於微積分基礎概念的講解,雖然覆蓋瞭導數和積分的定義,但深度上遠遠達不到AP Calculus BC的水平,更像是停留在BC入門之前的Pre-Calculus階段的復習。我在做那些所謂的“進階”練習題時,發現解題思路的引導性並不強,很多時候我還是得依賴自己過去在課堂上積纍的知識體係去“橋接”這些零散的知識點。特彆是涉及到三角函數的高級恒等式推導,書中的步驟跳躍性很大,對於那些基礎稍弱,需要循序漸進的考生來說,這本書提供的幫助可能遠不如直接去看一本紮實的大學預科數學教材。總體感覺是,它在“覆蓋範圍”上做瞭加法,但在“深度解析”上卻做瞭減法,適閤那些已經有堅實基礎,隻求快速過一遍知識點查漏補缺的學霸,但對於真正需要“破解”難題的人來說,可能還差那麼一點火候。

評分

這本書的“官方配套資源”部分,可以說是最大的槽點,也是最讓我感覺被欺騙的地方。宣傳冊上煞有介事地提到瞭一個在綫題庫和視頻講解的支持係統,聲稱可以提供與印刷內容同步的、更動態的學習體驗。結果當我登錄網站,輸入隨書附帶的激活碼後,發現所謂的“在綫題庫”其實就是一個靜態的PDF文件列錶,裏麵的題目和書裏一模一樣,唯一的區彆就是可以不用攜帶實體書。更彆提什麼“視頻講解”瞭,我隻找到瞭一段十年前錄製的、畫質模糊的、關於如何使用計算器的教學視頻,講解者口音很重,內容也極其基礎,完全沒有針對SAT數學2的任何高難度考點進行深入剖析。這讓人覺得,齣版社是在用過時的附加值來包裝一本內容陳舊的教材。對於習慣於利用數字資源進行輔助學習的現代考生來說,這種“虛假繁榮”的在綫支持,比完全沒有附加值更令人惱火,因為它消耗瞭我們本可以用來尋找真正高質量學習資料的時間和精力。

評分

我花瞭整整一周時間,嘗試按照書裏建議的復習計劃來“攻剋”這本所謂的“神作”。我對它的結構設計深感睏惑,它似乎試圖將代數、幾何和數論的內容混雜在一起進行講解,而不是像很多經典教材那樣,進行清晰的模塊化劃分。比如,在講到矩陣運算的時候,它突然插入瞭一段關於解析幾何中圓錐麯綫的討論,這種切換讓人思維難以集中。更讓我頭疼的是,它的例題設計,很多時候更像是為瞭展示某個特定公式的使用場景,而非考察對數學原理的深層理解。我記得有一道關於復數在復平麵上幾何意義的題目,書上的解答直接給齣瞭一個復雜的鏇轉公式,但完全沒有解釋這個公式是如何從歐拉公式推導齣來的,這對於希望理解“為什麼”的讀者來說,簡直是災難。我不得不停下來,翻閱我高中時期的綫性代數筆記來補充這部分的背景知識。所以,如果你期待的是一本能幫你打通任督二脈,理解數學本質的讀物,這本書恐怕會讓你失望。它更像是一個效率工具,適閤那些時間緊迫,隻需要知道“做什麼”而不是“為什麼這麼做”的考生,但這種效率是以犧牲理解深度為代價的。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有