内容简介
《液化天然气技术手册》讲述了本手册较全面地反映了国内外液化天然气的最新应用和技术进展。内容全面、丰富新颖,论述深入浅出,是一本实用性很强的工具书。主要阐述了液化天然气的基本理论、最新技术和工程应用实践。内容包括液化天然气技术理论基础,天然气液化,液化天然气装置的相关设备,液化天然气接收终端,液化天然气的储存和运输,液化天然气设备的制造工艺和材料,液化天然气工厂和接收终端的设计基础,液化天然气应用技术,液化天然气冷能回收技术,以及液化天然气安全技术等。
《液化天然气技术手册》可供能源领域,尤其是液化天然气专业的工程技术人员阅读使用,也可供大专院校相关专业的师生教学参考。
内页插图
目录
前言
第1章 液化天然气技术理论基础
1.1 工程热力学基础
1.1.1 基本概念和定义
1.1.2 热力学基本定律
1.2 流体力学基础
1.2.1 流体的物理性质
1.2.2 流体的可压缩性与热膨胀性
1.2.3 流体的传输特性
1.2.4 表面张力和毛细现象
1.2.5 流体的平衡——流体静力学基础
1.2.6 理想流体运动的基本方程——流体动力学基础
1.3 传热学基础
1.3.1 导热
1.3.2 对流换热的理论基础及计算
1.3.3 辐射换热的基础理论
1.4 液化天然气的一般特性
1.4.1 热力特性
1.4.2 传输特性
1.4.3 材料特性
1.4.4 绝热特性
1.4.5 储存特性
1.4.6 冷能利用特性
参考文献
第2章 天然气的液化
2.1 液化前原料气处理
2.1.1 脱水
2.1.2 脱酸性气体
2.1.3 脱其他杂质
2.1.4 HYSYS软件模拟工艺过程
2.2 天然气液化流程
2.2.1 级联式液化流程
2.2.2 混合制冷剂液化流程
2.2.3 带膨胀机的液化流程
2.3 天然气液化装置
2.3.1 基本负荷型(基地型)液化装置
2.3.2 典型中小型液化装置
2.3.3 浮式液化天然气生产储卸装置
2.4 世界各国液化天然气装置汇集
参考文献
第3章 液化天然气接收终端
3.1 液化天然气接收终端概况
3.1.1 卸料系统
3.1.2 储存系统
3.1.3 蒸发气(BOG)处理
3.1.4 LNG输送系统
3.1.5 LNG汽化
3.1.6 公用工程
3.2 典型的陆岸液化天然气接收终端
3.2.1 站址选择
3.2.2 规范和标准
3.2.3 船和码头设施及建设
3.2.4 卸料过程
3.2.5 LNG储罐
3.2.6 蒸发气处理
3.2.7 输送系统
3.2.8 汽化
3.2.9 公用工程
3.2.10 自控系统
3.2.11 安全和消防
3.2.12 计量系统
3.2.13 分析化验
3.3 液化天然气接收终端设备和材料
3.3.1 卸料臂和蒸发气返回臂
3.3.2 LNG输送泵
3.3.3 蒸发气压缩机
3.3.4 再冷凝器
3.3.5 汽化器
3.3.6 海水泵和消防水泵
3.3.7 海水过滤器
3.3.8 电解氯装置
3.3.9 材料选用
3.3.10 保冷工程
3.4 性能试验
3.4.1 单机/单元功能试验
3.4.2 装置性能试验
3.4.3 试运行
3.5 大型液化天然气储罐
3.5.1 储罐设计
3.5.2 储罐材料
3.5.3 全包容储罐的结构建造
3.5.4 干燥、惰化和冷却
3.6 节能与冷能利用
3.6.1 节能措施
3.6.2 冷能综合利用
3.7 新型液化天然气接收终端
3.7.1 码头汽化接收终端
3.7.2 海上汽化接收终端
3.8 世界各国液化天然气接收终端汇集
参考文献
第4章 LNG工厂设计基础
4.1 LNG工厂设计
4.1.1 厂址选择
4.1.2 工厂布置
4.1.3 LNG工程项目组成举例
4.2 装置(车间)布置
4.2.1 工艺装置组成
4.2.2 布置原则
4.2.3 布置工作内容
4.3 工程经济
4.3.1 投资估算
4.3.2 融资方案
4.3.3 财务评价
4.3.4 国民经济评价
4.3.5 经济分析常用符号中英文对照
4.4 环境保护
4.4.1 环境保护标准
4.4.2 工程项目的环境保护编制提纲
4.5 劳动安全卫生
4.5.1 标准及评价方法
4.5.2 工程项目的劳动安全卫生编制提纲
4.6 消防
4.6.1 消防标准
4.6.2 LNG工程总平面布置的防火间距
4.6.3 工艺生产装置、储罐布置的相关安全距离
4.6.4 消防设施
4.7 电力安全设计
4.7.1 供电及电气爆炸和火灾危险性环境区域的划分
4.7.2 爆炸性气体环境和火灾危险环境用电器设备的选择
4.7.3 爆炸性气体环境和火灾危险环境用电气设备选择
参考文献
第5章 液化天然气储存和运输
5.1 液化天然气陆上储存
5.1.1 LNG储罐形式
5.1.2 LNG储罐的比较及选择
5.1.3 储罐结构与建造
5.1.4 L,NG储罐的特殊要求与施工
5.1.5 大型LNG常压储罐
5.1.6 真空粉末绝热LNG储罐
5.1.7 LNG子母罐
5.2 液化天然气陆上运输
5.2.1 液化天然气汽车罐车
5.2.2 液化天然气罐式集装箱
5.2.3 运输的运行管理
5.3 LNG海上运输
5.3.1 LNG船在产业链中的作用及世界LNG船的现状和发展
5.3.2 LNG船的技术特征和液货舱技术
5.3.3 LNG船的装卸系统
5.3.4 LNG船的安全管理
5.3.5 LNG船的典型船例
5.3.6 世界各国LNG船汇集
参考文献
第6章 液化天然气设备的主要工艺和材料
6.1 绝热工艺
6.1.1 绝热工艺理论
6.1.2 绝热材料
6.2 焊接工艺
6.2.1 材料和技术指标
6.2.2 坡口形式和焊接参数
6.2.3 焊接接头和焊缝金属力学性能
6.2.4 焊缝无损检测
6.2.5 船载LNG储罐的焊接
6.3 材料
6.3.1 金属材料
6.3.2 非金属材料
参考文献
第7章 液化天然气冷能利用
7.1 液化天然气冷能利用及其〈火用〉分析
7.1.1 LNG冷能利用概述
7.1.2 LNG冷能炯分析数学模型
7.1.3 LNG冷能炯特性分析
7.2 冷能发电
7.2.1 利用LNG冷能发电的方案
7.2.2 日本利用LNG冷能发电概况
7.3 冷能回收用于空气分离
7.3.1 概述
7.3.2 技术方案
7.3.3 应用实例
7.4 冷能回收用于食品冷冻
7.4.1 概述
7.4.2 冷库
7.4.3 冷媒选择
7.4.4 冷能利用于冷库方案举例
7.5 冷能回收的其他应用
7.5.1 液态二氧化碳和干冰生产
7.5.2 低温粉碎
7.5.3 轻烃回收
7.5.4 制冰与空调
7.5.5 海水淡化
7.5.6 相变储能
7.5.7 LNG冷能综合利用
参考文献
第8章 液化天然气装置的主要设备
8.1 压缩机
8.1.1 往复式压缩机
8.1.2 透平式压缩机
8.2 透平膨胀机
8.2.1 概述
8.2.2 透平膨胀机工作原理
8.2.3 透平膨胀机结构形式和性能参数
8.2.4 气、液两相膨胀机的应用
8.3 换热器
8.3.1 概述
8.3.2 板翅式换热器
8.3.3 绕管式换热器(SWHE)
8.3.4 LNG汽化器
8.4 LNG装卸臂
8.4.1 LNG装卸臂的类型和规格
8.4.2 装卸臂的主要部件
8.4.3 装卸臂的流动阻力
8.5 LNG泵
8.5.1 泵的基本参数
8.5.2 LNG泵的特殊性
8.5.3 潜液式电动泵(SEMP)
8.5.4 潜液泵的电动机与电缆
8.5.5 潜液泵的有关测试项目
参考文献
第9章 液化天然气相关的安全技术
9.1 有关天然气的安全特性
9.1.1 天然气的燃烧范围和着火温度
9.1.2 天然气的燃烧速度和燃爆
9.1.3 爆炸
9.1.4 LNG的低温特性
9.2 液化天然气的泄漏和溢出
9.2.1 泄漏
9.2.2 LNG的溢出
9.2.3 LNG溢出的预防与控制
9.3 安全评价
9.3.1 概述
9.3.2 安全评价
9.4 消防
9.4.1 概述
9.4.2 液化天然气工程的消防设施
9.4.3 灭火剂
9.5 安全规范与相关标准
9.5.1 国际上有关LNG的标准
9.5.2 国内有关的法令、法规、标准
参考文献
附录
附录A 压力容器与压力管道设计类别、级别的划分
附录B 计算机辅助设计应用软件
附录C 天然气各组分的热物性图和表
精彩书摘
7.平衡状态
平衡状态是指热力系在没有外界作用的情况下,宏观性质不随时间变化的状态。
处于平衡状态的单相流体(气体或液体),如果忽略重力的影响,又没有其他外场作用,它内部各处的各种性质都是均匀一致的。不仅流体内部的压力均匀一致(这是建立力平衡的必要条件)、温度均匀一致(这是建立热平衡的必要条件),而且所有其他宏观性质,例如:比体积、比热力学能、比焓、比熵等也都是均匀一致的。
处于气.液两相平衡的流体,流体内部的压力和温度均匀一致,但气相和液相的比体积(或密度)、比热力学能、比焓、比熵不同。
8.状态方程和状态参数坐标图
处于平衡(均匀)状态的热力系,两个相互独立的状态参数就可以规定它的平衡状态。在其他状态参数和这两个相互独立的状态参数之间,必定存在某种单值的函数关系。压力、温度、比体积这三个可以直接测量的基本状态参数之间存在v=f(p,T)的关系。这一函数关系称为状态方程。状态方程也可以写为如下隐函数的形式:
f(p,v,T)=0(1-7)
9.热力过程和热力循环
热力过程是指热力系从一个状态向另一个状态变化时所经历的全部状态的总合。
热力循环就是封闭的热力过程,即热力系从某一状态开始,经过一系列中间状态后,又回复到原来状态。
10.功和热量
热力系通过界面和外界进行的机械能的交换量称为做功量,简称功(机械功)。它们之间的热能的交换量称为传热量,简称热量。功和热量是和热力系的状态变化(即过程)联系在一起的。它们不是状态量而是过程量。
功的符号是W,热量的符号是Q。对于单位质量的热力系,功用w表示,热量用q表示。热力学中通常规定:热力系对外界做功为正(W〉0),外界对热力系做功为负(W〈O);热力系从外界吸热为正(Q〉0),热力系向外界放热为负(Q〈0)。
11.实际气体和理想气体
气体通常具有较大的比体积,气体分子之间的平均距离通常要比液体和固体的大得多。气体分子本身的体积通常比气体所占的体积小得多,气体分子之间的作用力(分子力)也较小,分子运动所受到的约束较弱,分子运动很自由。
……
前言/序言
《现代农业技术与可持续发展》 图书简介 在二十一世纪的今天,全球人口持续增长,资源日益紧张,气候变化带来的挑战愈发严峻,这使得农业正面临着前所未有的转型压力。传统的粗放式耕作模式已难以为继,迫切需要一场以科技创新为核心,以生态友好为导向的深刻变革。《现代农业技术与可持续发展》正是在这样的时代背景下,应运而生的一部综合性、前瞻性的专业著作。本书并非简单罗列各种农业技术,而是深入探讨如何将尖端科技与生态智慧相结合,构建一个高效、稳定、环境友好的未来农业体系。 本书结构严谨,内容涵盖了现代农业的各个关键领域,旨在为农业科研人员、政策制定者、农业企业管理者以及高素质的农技推广人员提供一个全面而深刻的知识框架和实践指导。 第一部分:农业的数字化与智能化转型 本部分聚焦于信息技术如何重塑农业的生产流程。我们首先探讨了精准农业(Precision Agriculture)的基础理论与应用。这包括遥感技术(RS)、全球定位系统(GNSS)在农田信息采集中的核心作用,以及地理信息系统(GIS)如何将空间数据转化为可操作的农事决策。 随后,书籍深入剖析了农业物联网(IoT)的构建。从土壤传感器网络到气候监测站,如何实时、连续地采集作物生长环境的细微变化数据。重点阐述了如何利用这些海量数据进行大数据分析,实现水肥的精准变量施用(Variable Rate Application, VRA),从而最大程度地提高资源利用率,减少浪费和环境负荷。 更进一步,本书详细介绍了农业机器人与自动化技术的应用前景与现状。从自动驾驶的拖拉机、植保无人机到采摘机器人,这些技术如何解决农业劳动力短缺问题,并提高作业的精准度和效率。其中,机器学习(ML)和深度学习(DL)在作物病虫害早期识别、杂草与作物区分等方面的最新突破,被作为重点案例进行剖析。 第二部分:生物技术赋能的作物改良与增产 可持续农业的根基在于作物品质和产量的稳定提升。本部分着重介绍现代生物技术在育种和作物健康管理中的革命性作用。 我们全面梳理了分子育种技术的进展,特别是CRISPR/Cas9等基因编辑工具如何加速抗逆性(抗旱、抗盐碱、抗病虫害)和高营养品质作物的选育。书籍强调了生物育种的伦理考量与监管框架,确保技术应用的科学性和社会接受度。 在作物营养与健康方面,本书超越了传统的化肥和农药模式。深入探讨了微生物肥料与生物农药的作用机理。这包括有益微生物菌剂(如固氮菌、解磷菌)对土壤健康和养分循环的积极影响,以及如何利用天敌、生物诱导抗性和植物源农药来替代化学品,实现绿色植保。此外,关于土壤健康与碳汇的章节,详细论述了健康土壤结构对固碳减排的巨大潜力,以及覆盖种植、免耕技术在维持土壤有机质中的关键作用。 第三部分:环境友好型资源管理 可持续性是贯穿全书的主线。本部分集中探讨如何在农业生产中实现水资源、能源和废弃物的循环利用。 水资源管理方面,本书详细分析了各种节水灌溉技术(如滴灌、微喷灌)的工程设计与优化,并结合气候模型,探讨了水资源的智能调度系统,尤其关注在干旱半干旱地区的抗旱策略。 关于农业废弃物资源化,我们提供了多维度的解决方案。包括秸秆的还田、饲料化、能源化(生物质能)的先进技术。对于畜禽粪便,详细介绍了厌氧消化制沼气和生产有机肥的闭环系统,以此减少温室气体排放并生产可再生能源。 能源效率与可再生能源集成是本部分的另一个核心议题。探讨了光伏发电、地热能等在农业生产设施(如温室、烘干设备)中的应用模式,力求降低农业生产的碳足迹。 第四部分:智慧供应链与食品安全 现代农业不仅关乎田间地头的生产,更延伸至整个供应链。本书探讨了如何利用技术保障“从农场到餐桌”的全过程透明化与安全性。 区块链技术在食品溯源中的应用被作为重点分析对象,它如何建立不可篡改的记录,增强消费者信任,并有助于危机发生时的快速响应。此外,冷链物流的优化,结合环境监测技术,确保了农产品的品质和营养价值在运输和储存过程中的维持。 最后,本书对农业生态系统服务价值评估进行了前沿的探讨。旨在将生态效益(如生物多样性保护、水土保持)量化,纳入农业经济核算体系,从而引导政策向真正可持续的方向发展。 《现代农业技术与可持续发展》集合了多学科领域的最新研究成果,以严谨的科学态度和实用的工程视角,为构建一个人与自然和谐共处的现代农业愿景,提供了坚实的理论支撑和可行的技术路径。它不仅仅是一本技术手册,更是一部面向未来的农业发展蓝图。