内容简介
《概率论》以英文的形式介绍了高等学校概率论方面的知识。The subject matter of probability theory is the mathematical analysis of random events, that is, of those empirical phenomena which do not have deterministic regularity but possess some statistical regularity.
内页插图
目录
chapter 1 events and probabilities
1.1 random phenomena and statistical regularity
1.1.1 random phenomena
1.1.2 the statistical definition of probability
1.2 classical probability models
1.2.1 sample points and sample spaces
1.2.2 classical probability models
1.2.3 geometric probability models
1.3 the axiomatic definition of probability
1.3.1 events
1.3.2 probability space
1.3.3 continuity of probability measure
1.4 conditional probability and independent events
1.4.1 conditional probability
1.4.2 total probability formula and bayes’rule
1.4.3 independent events
chapter 2 random variables and distribution functions
2.1 discrete random variables
2.1.1 the concept of random variables
2.1.2 discrete random variables
2.2 distribution functions and continuous random variables
2.2.1 distribution functions
2.2.2 continuous random variables and density functions
2.2.3 typical continuous random variables
2.3 random vectors
2.3.1 discrete random vectors
2.3.2 joint distribution functions
2.3.3 continuous random vectors
2.4 conditional distributions and independence
2.4.1 conditional distributions
2.4.2 i ndependence of random variables
2.5 functions of random variables
2.5.1 functions of discrete random variables
2.5.2 functions of continuous random variables
2.5.3 functions of continuous random vectors
2.5.4 transforms of random vectors
2.5.5 important distributions in statistics
chapter 3 numerical characteristics and characteristic functions
3.1 mathematical expectations
3.1.1 expectations for discrete random variables
3.1.2 expectations of continuous random variables
chapter 4 probability limit theorems
appendix a distribution of typical random variables
appendix b tables
index
前言/序言
The subject matter of probability theory is the mathematical analysis of random events
概率论 [Probability Theory] 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
立事件。且A和B的此一关系为对称的,这可以由一同价叙述:“,当A和B为独立事件时。”中看出。机率论中的两个重要概念为随机变量和随机变量之机率分布这两种概念。 作为数学统计基础的概率论的创始人分别是法国数学家帕斯卡和费马。
评分
☆☆☆☆☆
概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题
评分
☆☆☆☆☆
概率
评分
☆☆☆☆☆
评分
☆☆☆☆☆
骰子(11张)有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。
评分
☆☆☆☆☆
数学家和精算师认为机率是在0至1之间之闭区间的数字,指定给一发生与失败是随机的“事件”。机率P(A)根据机率公理来指定给事件A。一事件A在一事件B确定发生后会发生的机率称为B给之A的条件机率;其数值为
评分
☆☆☆☆☆
立事件。且A和B的此一关系为对称的,这可以由一同价叙述:“,当A和B为独立事件时。”中看出。机率论中的两个重要概念为随机变量和随机变量之机率分布这两种概念。 作为数学统计基础的概率论的创始人分别是法国数学家帕斯卡和费马。
评分
☆☆☆☆☆
(当P(B)不等于零时)。若B给之A的条件机率和A的机率相同时,则称A和B为独
评分
☆☆☆☆☆
概率