圖像處理中的數學問題(第2版)(英文版) [Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations]

圖像處理中的數學問題(第2版)(英文版) [Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations] pdf epub mobi txt 電子書 下載 2025

[法] 奧伯特 著
圖書標籤:
  • 圖像處理
  • 偏微分方程
  • 變分法
  • 數學方法
  • 圖像分析
  • 數值分析
  • 優化算法
  • PDE
  • 圖像建模
  • 計算成像
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510005381
版次:1
商品編碼:10104513
包裝:平裝
外文名稱:Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations
開本:24開
齣版時間:

具體描述

內容簡介

Introduction、The Image Society、What Is a Digital Image、About Partial Differential Equations(PDEs)、Detailed Plan、Mathematical Preliminaries、How to Read This Chapter、The Direct Method in the Calculus of Vgriations、Topologies on Banach Spaces、Convexity and Lower Semicontinuity、Rclaxation、Aboutr-Convergence、The Space of Functions of Bounded Variation、Basic Definitions on Measures、Definition ofBV(Ω)、Properties ofBV(Ω)、Convex Functions of Measures、Viscosity Solutions in PDEs等等。

內頁插圖

目錄

Foreword
Preface to the Second Edition
Preface to the First Edition
Guide to the Main Mathematical Concepts and
Their Application
Notation and Symbols
1 Introduction
1.1 The Image Society
1.2 What Is a Digital Image7
1.3 About Partial Differential Equations(PDEs)
1.4 Detailed Plan

2 Mathematical Preliminaries
How to Read This Chapter.
2.1 The Direct Method in the Calculus of Vgriations
2.1.1 Topologies on Banach Spaces
2.1.2 Convexity and Lower Semicontinuity
2.1.3 Rclaxat.ion
2.1.4 About r-Convergence
2.2 The Space of Functions of Bounded Variation
2.2.1 Basic Definitions on Measures
2.2.2 Definition ofBV(Ω)
2.2.3 Properties ofBV(Ω)
2.2.4 Convex Functions of Measures
2.3 Viscosity Solutions in PDEs
2.3.1 About the Eikonal Equation
2.3.2 Definition of Viscosity Solutions
2.3.3 About the Existence
2.3.4 About the Uniqueness
2.4 Elements of Differential Geometry:Curvature
2.4.1 Parametrized Curves
2.4.2 Curves aS Isolevel of a Function u
2.4.3 Images aS Surfaces
2.5 0ther Classical Results Used in This Book
2.5.1 Inequalities
2.5.2 Calculus Facts
2.5.3 About Convolution and Smoothing
2.5.4 Uniform Convergence
2.5.5 Dominated Convergence瞭heorem
2.5.6 Well-Posed Problems

3 Image Restoration How to Read This Chapter
3.1 Image Degradation
3.2 The Energy Method
3.2.1 An Inverse Problem
3.2.2 Regularization of the Problem
3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem
3.2.4 Toward the Numerical Approximation
The Projection Approach
The Half-Quadratic Minimization Approach
3.2.5 Some Invariances and the Role of
3.2.6 Some Remarks on the Nonconvex CaSe
3.3 PDE-BaSed Methods
3.3.1 Smoothing PDEs
The Heat Equation
Nonlinear DiRusion
The Alvarez-Guichard-Lions-Morel
Scale Space Theory
Weickerts Approach
Surface Based Approaches
3.3.2 Smoothing-Enhancing PDEs
The Perona and Malik Model
Regutarization of the Perona and Malik Model:Catte et aL
3.3.3 Enhancing PDEs
The Osher and Rudin Shock Filters
A Case Study:Construction of a Solution by the Method ofCharacteristics
Comments on the Shock-Filter Equation
3.3.4 NeighborbOOd Filters,Nonlocal Means Algorithm,and PDEs
Neighborhood Filters
How to Suppress the Staircase Effect?
Nonlocal Means Filter(NL-Means)

4 The Segmentation Problem
How to Read This Chapter
4.1 Definition and Objectives
4.2 The Mumford and Shah Functional
4.2.1 A Minimization Problem
4.2.2 The Mathematical Framework for the Existence of a Solution
4.2.3 Regularity of the Edge Set
4.2.4 Approximations of the Mumford and Shah Functional
4.2.5 Experimental Results
4.3 Geodesic Active Contours and the Level.Set Method
4.3.1 The Kass-Witkin-Terzopoulos model
4.3.2 The Geodesic Active Contours Model
4.3.3 The Level-Set Method
4.3.4 The Reinitialization Equation
CharaCterization of the Distance Function
Existence and Uniqueness
4.3.5 Experimental Results
4.3.6 About Some Recent Advances
Global Stopping Criterion
Toward More General Shape Representation

5 Other Challenging AppliCations
How to Read This Chapter
5.1 Reinventing Some Image Parts by Inpainting
5.1.1 IntroduCtion
5.1.2 Variational Models
The Masnou and Morel Approach
The Ballester et al.Approach
The Chan and Shen Total Variation Minimization
Approach
5.1.3 PDE-Based Approaches
The Bertalmio et a1.Approach
The Chan and Shen Curvature-Driven Diffusion Approach
5.1.4 Discussion
5.2 Decomposing an Image into Geometry and Texture
5.2.1 Introduction
5.2.2 A Space for Modeling Oscillating Patterns
5.2.3 Meyer’S Model.
5.2.4 An Algorithm to Solve Meyer’S Model
Prior Numerical C:ontribution
The Aujol et a1.Approach
Study of the Asymptotic Case
Back to Meyers Model
5.2.5 Experimental Results
Denoising Capabilities
Dealing With Texture
5.2.6 About Some Recent Advances
5.3 Sequence Analysis
5.3.1 Introduction
5.3.2 The Optical Flow:An Apparent Motion
The Optical Flow Constraint(OFC)
Solving the Aperture Problem
Overview of a Discontinuity.Preserving
Variational Approach
Alternatives to the OFC
5.3.3 Sequence Segmentation
Introduction
A Vriational Formulation
Mathematical Study of the Time-Sampled Energy
Experiments
5.3.4 Sequence Restoration
Principles of Video Inpainting
Total Variation(tV)Minimization Approach
Motion Compensated(MC)Inpainting
5.4 Image Classification
5.4.1 Introduction
5.4.2 A Level-Set Approach for Image Classification
5.4.3 A Variational Model for Image Classification and Restoration
5.5 Vector-Valued Images
5.5.1 Introduction
5.5.2 An FXtended Nbtion of Grudieut
A Introduction to Finite Digerence Methods
B Experiment Yourself!
References
Index

精彩書摘

The message we wish to convey iS that the intuition that lcads to certain formulations and the underlying theoretical study are often complementary.
Developing a theoretical justification of a problem is not simply“art for arts sake.”In particular,a deep understanding of the theoretical difficulties may lead to the development of suitable numerical schemes or different models.
This book iS concerned with the mathematical study of certain image processing problems.Thus we target two audiences:
The first iS the mathematical community.and we show the contribution of mathematics to this domain by studying classical and challenging problems that come from computer vision.It is also the occasion to highlight some difficult and unsolved theoretical questions.
The second is the computer vision community:we present a clear. selLC0ntained.and global overview of the mathematics involved for the problems of image restoration,image segmentation,sequence analysis,and image classification.
We hope that this work will serve as a useful source of reference and inspiration for fellow researchers in applied mathematics and computer vision, as well as being a basis for advanced courses within these fields.
This book iS divided into seven main parts.Chapter 1 introduces the subject and gives a detailed plan of the book.In Chapter 2,most of the mathematical notions used therein are recalled in an educative fashion and illustrated in detail.In Chapters 3 and 4 we examine how PDES and variational methods can be Successfully applied in the restoration and segmentation of one image.Chapter 5 is more applied,and some challenging computer vision problems are described,such as inpainting,sequence analysis,classification or vector-valued image processing.Since the final goal of any approach is to compute a numerical solution,we propose an introduction to the method of finite difierences in the Appendix.

前言/序言

  It is surprising when we realize just how much we are surrounded by images.Images allow US not only to perform complex tasks on a daily basis, but also to communicate,transmit information,and represent and under. stand the world around US.Just think、for instance、about digital television, medical imagery,and video surveillance.The tremendous development in information technology accounts for most of this.we are now able to handle more and more data.Many day.to-day tasks are now fully or partially accomplished with the help of computers.Whenever images are involved we are entering the domains of computer vision and image processing.
  The requirements for this are reliability and speed.Efficient algorithms have to be proposed to process these digital data.It is also important to rely on a well-established theory to iustifv the well-founded nature of the methodology.
  Among the numerous approaches that have been suggested,we focus on partial difierential equations(PDEs),and variational approaches in this book.Traditionally applied in physics.these methods have been successfully and widely transferred to computer vision over the last decade.One of the main interests in using PDEs iS that the theory behind the concept iS well established.Of course.PDEs are written in a continuous setting referring to analogue images, and once the existence and the uniqueness have been proven.we need to discretize them in order to find a numerical solution.It iS our conviction that reasoning within a continuous frame work makes the underStanding of physical realities easier and stimulates the intuition necessary to propose new models.We hope that this book will illustrate this idea effectively.

好的,這是一份基於您提供的書名和英文原名,但不包含該書具體內容的圖書簡介,旨在詳細介紹一個不同的、相關領域的圖書可能涵蓋的內容。 --- 圖書簡介:計算幾何與三維重建的理論基礎 書名: 計算幾何與三維重建的理論基礎 (Foundations of Computational Geometry and 3D Reconstruction) 版本: 第二版 作者: [此處可虛擬一位專傢姓名,例如:李明 教授] ISBN: [此處可虛擬一個ISBN號] --- 導言:從數據到數字孿生 在信息時代,我們每天都在生成海量的數字化信息。其中,對現實世界進行精確的幾何描述和三維建模的需求日益增長,這不僅是計算機圖形學、虛擬現實(VR/AR)的核心,也是機器人導航、自動駕駛、工業檢測乃至醫學影像分析的關鍵技術支撐。本書旨在為讀者提供一個堅實的理論框架,深入探討如何從離散的、不完備的傳感器數據(如點雲、多視角圖像)中提取、計算並構建齣精確、魯棒的三維幾何模型。 本書聚焦於計算幾何的核心算法與原理,並將其應用於三維重建的實際問題中。我們避免瞭對具體軟件或應用場景的膚淺介紹,而是專注於支撐這些應用背後的數學和算法邏輯,確保讀者能夠理解並掌握從底層原理到高層實現的轉化過程。 第一部分:離散幾何與拓撲基礎 本書的基石建立在對離散空間的精確描述之上。我們將從歐幾裏得空間中的基本概念齣發,係統地介紹處理不規則數據的數學工具。 第1章:點集拓撲與鄰域結構 本章詳細闡述瞭如何定義和處理三維空間中的點雲數據。內容涵蓋: 鄰域的定義與選擇: $epsilon$-球鄰域、k-近鄰(k-NN)圖的構建與性質分析。重點討論瞭不同鄰域選擇對後續幾何計算穩定性的影響。 麯率的離散估計: 介紹基於局部協方差矩陣(PCA)的點法綫估計方法,並深入推導法嚮量估計的誤差邊界。麯率的計算方法,包括高斯麯率和平均麯率的離散化近似,以及它們在特徵點檢測中的應用。 拓撲結構: 引入單純復形(Simplicial Complexes)的概念,為後續的錶麵重建奠定理論基礎。討論瞭持久同調(Persistent Homology)在點雲去噪和特徵提取中的初步應用,以理解數據的內在“洞”和連通性。 第2章:空間劃分與數據加速結構 為瞭高效處理大規模點雲數據,高效的空間索引結構至關重要。本章專注於空間劃分技術: Kd-樹與八叉樹(Octrees): 深入分析這些數據結構的構造算法、最優性分析以及在最近鄰搜索中的性能錶現。討論瞭動態更新與平衡性的問題。 空間剖分與體素化: 介紹如何將無序點雲映射到規則的體素空間中,探討網格分辨率的選擇標準,以及體素化在傳感器數據融閤中的作用。 第二部分:麯麵重建的數學方法 三維重建的核心任務是將離散的采樣點提升為一個連續、光滑的幾何錶麵。本部分將重點剖析幾種主流的、具有嚴格數學背景的重建方法。 第3章:基於隱式函數的重建 隱式麯麵錶示因其處理拓撲復雜性、自動封閉性的優勢而被廣泛采用。 輻射基函數(RBFs)方法: 詳細介紹如何利用RBFs構造一個全局插值函數來描述麯麵,推導其求解過程中的病態性(Ill-conditioning)問題,並討論正則化(Regularization)技術,如Tikhonov正則化,以增強解的穩定性。 泊鬆重建(Poisson Surface Reconstruction, PSR): 這是當前應用最廣泛的隱式方法之一。本章將深入剖析其理論基礎——梯度場積分的求解。我們將詳盡推導泊鬆方程的推導過程,分析其與嚮量場散度的關係,並探討如何選擇閤適的基函數和邊界條件來優化重建結果。 第4章:三角網格化與參數化方法 針對需要直接生成三角網格輸齣的場景,本章介紹基於局部幾何約束的方法。 Delaunay三角剖分與Voronoi圖: 討論在三維空間中進行空腔填充和錶麵構建的原理,特彆是在麯麵重建背景下的約束Delaunay三角剖分。 最小二乘擬閤與局部錶麵參數化: 介紹如何通過局部最小二乘擬閤來估計錶麵法綫和麯率,並利用這些信息進行網格的平滑處理(如Laplacian平滑)和細節保持(如二次誤差度量Eigensystem Smoothing)。 Delaunay/Voronoi在體積重建中的擴展: 如何從點雲直接生成一個封閉的、無自交的錶麵(例如,利用“最近的體素”方法與空域搜索相結閤)。 第三部分:多視角幾何與非剛性配準 現代三維重建越來越多地依賴於圖像數據。本部分將深入幾何計算如何與圖像處理相結閤,特彆是解決場景中物體運動或相機位姿估計的問題。 第5章:對極幾何與單應性矩陣 本章是多視角幾何的基礎,重點在於理解不同視角之間的幾何關係。 基礎矩陣(Fundamental Matrix)與本質矩陣(Essential Matrix): 詳細推導這兩種矩陣的幾何含義,分析其在歸一化坐標係下的約束條件,並介紹RANSAC等魯棒估計方法來處理圖像中的噪聲點。 單應性(Homography)的應用: 討論在平麵場景中,如何利用單應性矩陣進行紋理映射和平麵場景的校正。 第6章:非剛性配準與變形模型 當物體錶麵發生非剛性形變時,傳統的剛性配準方法失效。 Thin-Plate Spline (TPS) 模型: 介紹TPS如何作為一種柔性變換模型,用於描述和量化錶麵形變。重點分析其能量泛函的構造,以及如何最小化形變和擬閤數據的平衡。 基於特徵點的流形學習配準: 探討如何利用高維特徵空間中的距離度量來驅動非剛性配準,包括局部綫性嵌入(LLE)在錶麵變形跟蹤中的應用。 結語 本書的難度定位於高年級本科生、研究生以及從事相關領域研究和開發的工程師。通過對這些核心數學模型和算法的深入剖析,讀者將不僅能“使用”現有的三維重建工具,更能理解其局限性,並有能力設計齣更高效、更魯棒的定製化解決方案。本書強調數學嚴謹性與計算可行性之間的平衡,旨在培養讀者將抽象數學概念轉化為實際工程能力的思維方式。 ---

用戶評價

評分

我一直對那些能夠將抽象數學理論與實際應用緊密結閤的書籍情有獨鍾。這本書的書名就直接點齣瞭“圖像處理中的數學問題”,這讓我立刻産生瞭濃厚的興趣。我曾在一些圖像處理的論文中零散地接觸過偏微分方程和變分法的概念,但總感覺缺乏一個係統性的梳理和深入的理解。這本書似乎正是我一直在尋找的,它提供瞭一個框架,讓我能夠從數學的視角去理解圖像處理的本質,而不是僅僅停留在算法層麵。我期待它能夠幫助我建立起一個更紮實、更全麵的知識體係,從而在未來的學習和研究中,能夠更自信地麵對各種圖像處理的挑戰。

評分

作為一個對圖像處理的數學基礎充滿求知欲的讀者,這本書的書名《圖像處理中的數學問題》(第2版)(英文版)[Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations] 就像是一扇通往更深層次理解的大門。我一直覺得,要真正掌握一門技術,就必須瞭解其背後的科學原理。圖像處理,這個充滿視覺魔力的領域,其背後必然隱藏著精妙的數學模型。特彆是“偏微分方程”和“變分法”,這兩個詞匯在我腦海中勾勒齣瞭一種強大的解決問題的能力,仿佛它們能夠描述和優化圖像中各種復雜的變化。

評分

在我眼中,圖像處理不僅僅是算法的堆砌,更是一種將數學的美感轉化為視覺體驗的過程。這本書的書名,《圖像處理中的數學問題》(第2版)(英文版)[Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations],就直接點明瞭這一點。我一直認為,隻有深入理解瞭底層的數學原理,纔能真正地掌握圖像處理的精髓。偏微分方程和變分法,這兩個概念聽起來就充滿力量,它們似乎能夠描繪和解決圖像中一切連續而復雜的變換。我渴望通過這本書,能夠清晰地看到這些抽象的數學工具如何在實際的圖像處理任務中發揮作用,從而讓我對這個領域有更深刻的認知。

評分

這本書的名字聽起來就十分硬核,我一直對圖像處理這個領域充滿好奇,但又有點畏懼數學的門檻。一直以來,我總覺得圖像處理的魅力在於那些令人驚嘆的視覺效果,但深究其背後,必然是復雜的數學原理在支撐。這本書的齣現,讓我看到瞭一個係統學習這些“幕後英雄”的機會。尤其是“偏微分方程”和“變分法”這兩個詞,雖然聽起來很專業,但仔細想想,它們在描述連續變化、尋找最優解等問題上,恰恰是圖像處理中不可或缺的工具。比如,圖像的平滑、去噪、邊緣檢測,甚至更復雜的圖像恢復和分割,都離不開這些數學工具的精妙運用。

評分

我一直以來都對計算機視覺和圖像分析領域充滿熱情,但深知數學基礎的重要性。每當看到那些令人驚嘆的圖像處理技術,例如超分辨率重建、圖像去噪、醫學影像分析等,我都會好奇其背後的數學原理。這本書的書名《圖像處理中的數學問題》(第2版)(英文版)[Mathematical Problems In Image Processing:Partial Differential Equations and the Calculus of Variations],恰好精準地捕捉瞭我內心深處的求知欲。我特彆希望能夠通過這本書,深入理解偏微分方程和變分法是如何被巧妙地應用於解決這些實際的圖像處理問題的,從而提升自己在這個領域的理論深度和實踐能力。

評分

對於學習圖像處理的人來說,這是一本不錯的入門書,國外的同仁將圖像處理中所用到的數學知識作齣總結,更便於我們學習。也更有利於為今後的工作打下堅實的基礎。

評分

我正在搞PDE的圖像處理,這本是我見到的這方麵為數不多的專業書,與陳繁昌的那本比較,我感覺這本更加專業一點。國內也有幾本,例如王大凱和馮象初寫的,但我更喜歡前兩本。

評分

書非常難,需要深厚的數學功底,並且涉及很多泛函的知識

評分

不錯,很專業的書,對個人幫助很大

評分

圖像處理必備

評分

對於學習圖像處理的人來說,這是一本不錯的入門書,國外的同仁將圖像處理中所用到的數學知識作齣總結,更便於我們學習。也更有利於為今後的工作打下堅實的基礎。

評分

講解清晰,適閤初學者的專業用書

評分

很好,不錯,支持

評分

很好很好很好很好很好很好

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有