统一理论和超对称(第3版)

统一理论和超对称(第3版) pdf epub mobi txt 电子书 下载 2025

[美] 莫哈帕特拉 著
图书标签:
  • 物理学
  • 理论物理
  • 超对称
  • 统一场论
  • 粒子物理
  • 弦理论
  • 量子场论
  • 高能物理
  • 数学物理
  • 现代物理学
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510005718
版次:1
商品编码:10104529
包装:平装
开本:24开
出版时间:2010-04-01
用纸:胶版纸
页数:421
正文语种:英语

具体描述

内容简介

  《统一理论和超对称(第3版)》是作者依据其为马里兰大学高年级研究生授课时所用的讲义编著而成,详细介绍了人们尝试建立一个能够描述自然界中各种基本相互作用的大统一理论的最新进展。《统一理论和超对称(第3版)》包罗甚广,涉及到粒子物理学中的大统一理论和超对称理论中的许多议题,例如自发对称破缺,大统一理论,超对称性和超引力等。作者在简要回顾了基本粒子理论之后,详细介绍了复合夸克,轻子,希格斯玻色子和CP破坏等论题,最后讨论超对称的大统一方案。这是《统一理论和超对称(第3版)》的第三版,进一步修订了书中内容,添入该领域的最新进展,特别是近年来实验方面的诸多进展。对这些新进展的集中介绍很有意义,使得《统一理论和超对称(第3版)》成为该领域中连接传统理论与研究前沿的有益桥梁。无论对该领域的研究生还是对研究人员来讲,《统一理论和超对称(第3版)》都是一部很有价值的教科书和参考文献。

内页插图

目录

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
1 Important Basic Concepts in Particle Physics
1.1 Introduction
1.2 Symmetries and Currents
1.3 Local Symmetries and Yang-Mills Fields
1.4 Quantum Chromodynamic Theory of Strong Interactions
1.5 Hidden Symmetries of Weak Interactions
References

2 Spontaneous Symmetry Breaking
2.1 Symmetries and Their Realizations
2.2 Nambu-Goldstone Bosons for an Arbitrary Non-Abelian Group
2.3 Some Properties of Nambu-Goldstone Bosons
2.4 Phenomenology of Massless and Near-Massless Spin-0 Bosons
2.5 The Higgs-Kibble Mechanism in Gauge Theories
2.6 Group Theory of the Higgs Phenomenon
2.7 Renormalizability and Triangle Anomalies
References

3 The SU(2)L x U(1) Model
3.1 The SU(2)L x U(1) Model of Glashow, Weinberg, and Salam
3.2 Neutral-Current Interactions
3.3 Masses and Decay Properties of W and Z Bosons
3.4 Fermion Masses and Mixing
3.5 Higher-Order-Induced Flavor-Changing Neutral-Current Effects
3.6 The Higgs Bosons
3.7 SU(2)L x U(1) Model with Two Higgs Doublets
3.8 Puzzles of the Standard Model
3.9 Outline of the Various Scenarios
3.10 Beyond the Standard Model
References

4 CP Violation: Weak and Strong
4.1 CP Violation in Weak Interactions
4.2 CP Violation in Gauge Models: Generalities
4.3 The Kobayashi-Maskawa Model
4.4 Left-Right Symmetric Models of CP Violation
4.5 The Higgs Exchange Models
4.6 Strong CP Violation and the 0-Problem
4.7 Solutions to the Strong CP Problem without the Axion
4.8 Summary
References

5 Grand Unification and the SU(5) Model
5.1 The Hypothesis of Grand Unification
5.2 SU(N) Grand Unification
5.3 Sin2 Ow in Grand Unified Theories (GUT)
5.4 SU(5)
5.5 Grand Unification Mass Scale and Sin2θw at Low Energies
5.6 Detailed Predictions of the SU(5) Model for Proton Decay
5.7 Some Other Aspects of the SU(5) Model
5.8 Gauge Coupling Unification with Intermediate Scales before Grand Unification
References

6 Symmetric Models of Weak Interactions and Massive Neutrinos
6.1 Why Left-Right Symmetry?
6.2 The Model, Symmetry Breaking, and Gauge Boson Masses
6.3 Limits on MzR and rnwR from Charged-Current Weak Interactions
6.4 Properties of Neutrinos and Lepton-Number-Violating Processes
6.5 Baryon Number Nonconservation and Higher Unification
6.6 Sin2θw and the Scale of Partial Unification
6.7 Left-Right Symmetry——An Alternative Formulation
6.8 Higher Order Effects
6.9 Conclusions
References

7 SO(10) Grand Unification
7.1 Introduction
7.2 SO(2N) in an SU(N) Basis [3]
7.3 Fermion Masses and the "Charge Conjugation" Operator
7.4 Symmetry-Breaking Patterns and Intermediate Mass Scales
7.5 Decoupling Parity and SU(2)R Breaking Scales
7.6 Second Z Boson
References

8 Technicolor and Compositeness
8.1 Why Compositeness?
8.2 Technicolor and Electroweak Symmetry Breaking
8.3 Techni-Composite Pseudo-Goldstone Bosons
8.4 Fermion Masses
8.5 Composite Quarks and Leptons
8.6 Light Quarks and Leptons and t Hooft Anomaly Matching
8.7 Examples of t Hooft Anomaly Matching
8.8 Some Dynamical Constraints on Composite Models
8.9 Other Aspects of Composite Models
8.10 Symmetry Breaking via Top-Quark Condensate
References

9 Global Supersymmetry
9.1 Supersymmetry
9.2 A Supersymmetric Field Theory
9.3 Two-Component Notation
9.4 Superfields
9.5 Vector and Chiral Superfields
References

10 Field Theories with Global Supersymmetry
10.1 Supersymmetry Action
10.2 Supersymmetric Gauge Invariant Lagrangian
10.3 Feynman Rules for Supersymmetric Theories [3]
10.4 Allowed Soft-Breaking Terms
References

11 Broken Supersymmetry and Application to Particle Physics
11.1 Spontaneous Breaking of Supersymmetry
11.2 Supersymmetric Analog of the Goldberger Treiman Relation
11.3 D-Type Breaking of Supersymmetry
11.4 ORaifeartaigh Mechanism or F-Type Breaking of Supersymmetry
11.5 A Mass Formula for Supersymmetric Theories and the Need for Soft Breaking
References

12 Minimal Supersymmetric Standard Model
12.1 Introduction, Field Content and the Lagrangian
12.2 Constraints on the Masses of Superparticles
12.3 Other Effects of Superparticles
12.4 Why Go beyond the MSSM?
12.5 Mechanisms for Supersymmetry Breaking
12.6 Renormalization of Soft Supersymmetry-Breaking Parameters
12.7 Supersymmetric Left-Right Model
References
13 Supersymmetric Grand Unification
14 Local Supersymmetry (N = 1)
15 Application of Supergravity (N = 1) to Particle Physics
16 Beyond N = 1 Supergravity
17 Superstrings and Quark-Lepton Physics
Index

精彩书摘

  three-quark bound states, whereas meson spectroscopy arises from nonrela tivistic quark-antiquark bound states. Accepting quarks as the constituents of hadrons, we have to search for a field theory that provides the bindingforce between the quarks.
  In trying to understand the Fermi statistics for baryons (such as ), itbecame clear that if they are S-wave bound states, then the space part oftheir wave function is totally symmetric; since a particle such as consists of three strange quarks, and has spin 3/2, the spin part of its wave functionis symmetric. If there were no other degree of freedom, this would be indisagreement with the required Fermi statistics. A simple way to resolvethis problem is to introduce [11] a threefold degree of freedom for quarks,called color (quarks being color triplets) and assume that all known baryonsare singlet under this new SU(3). Since an SU(3)c-singlet constructed outof three triplets is antisymmetric in the interchange of indices (quarks), thetotal baryon wave function is antisymmetric in the interchange of any twoconstituents as required by Fermi statistics.
  It is now tempting to introduce strong forces by making SU(3)c into alocal symmetry. In fact, if this is done, we can show that exchange of theassociated gauge bosons provides a force for which the SU(3)c color singletis the lowest-lying state; and triplet, sextet, and octet states all have highermass. By choosing this mass gap large, we can understand why excitedstates corresponding to the color degree of freedom have not been found.
  While this argument in favor of an SU(3)c gauge theory of strong inter-action was attractive, it was not conclusive. The most convincing argumentin favor of SU(3)c gauge theory came from the experimental studies of deepinelastic neutrino and electron scattering off nucleons. These experimentsinvolved the scattering of very-high-energy (E) electronsand neutrinoswith the exchange of very high momentum transfers (i.e., q2 large). It wasfound that the structure functions, which are analogs of form factors forlarge q2 and E, instead of falling with q2, became scale-invariant functionsdepending only on the ratio q2/2mE. This was known as the phenomenonof scaling [12]. Two different theoretical approaches were developed to un-derstand this problem. The first was an intuitive picture called the partonmodel suggested by Feynman [13] and developed by Bjorken and Paschos[14], where it was assumed that, at very high energies, the nucleon can bethought of as consisting of free pointlike constituents. The experimentalresults also showed that these pointlike constituents were spin-l/2 objects,like quarks, and the scaling function was simply the momentum distri-bution function for the partons inside the nucleon. These partons couldbe identified with quarks, thus providing a unified description of the nu-cleon as consisting of quarks at low, as well as at high, energies. The maindistinction between these two energy regimes uncovered by deep inelas-tic scattering experiments is that at low energies the forces between thequarks are strong, whereas at high energies the forces vanish letting thequarks float freely inside the nucleons.

前言/序言

  The new millennium has brought new hope and vigor to particle physics.The menacing clouds of despair and discontent that enveloped the fieldfollowing the collapse of SSC have all but vanished. The discovery of neu-trino mass has brought the first light of new physics beyond the standardmodel. The LEP-SLC data has given strong hints of a light Higgs boson,which is widely hoped, will be discovered soon either at the Tevatron of LHC. LEP may quite possibly have missed it by a hair. Many neutrinoexperiments are either underway or are in the planning stages, and a roughoutline of neutrino mixing is appearing on the horizon. There are discussions of pulling resources internationally to build a linear collider after theLHC. Many major breakthroughs in the sister discipline of cosmology havelightened up the sky. Even the job situation in the field is showing signs of improvement after a long plateau.
  All this hope and optimism about a bright future for the field seem tobe resting on two ideas: unification and supersymmetry. The first is based on the amazing success of the standard model, giving credence to the possibility that the final theory of particle physics could come from gaugetheories and string theory, from which the gauge symmetries follow. The belief in supersymmetry arises not only from its beauty and elegance and its ability to truly unify matter and forces but also from the way it em- braces gravity into the fold of particle physics. Its hold on the field is almost as pervasive as that of gauge theories. Even though there are many other competing ideas vying for the attention of theorists, the general direction seems to be largely set towards supersymmetry, supergravity, and super- strings.

弦论、圈量子引力与前沿物理学:探索时空、物质与统一的边界 一本深入前沿物理学核心议题的权威著作,聚焦于当前理论物理学面临的最为根本性的挑战:如何构建一个兼容量子力学与广义相对论的统一框架。 本书汇集了二十一世纪以来理论物理学界最引人注目的两大学派——弦理论(String Theory)和圈量子引力(Loop Quantum Gravity, LQG)——的最新进展、核心思想和数学工具。它并非对某一既有成熟理论的简单综述,而是对探索物理学终极统一图景的多种路径的严谨审视与批判性分析。 第一部分:时空几何的量子化——圈量子引力的深度解析 本卷首先深入探讨了圈量子引力(LQG)的数学基础与物理图像。LQG力图通过对爱因斯坦场方程进行后量化处理,构建一个量子化的时空几何理论,避免了传统量子场论在描述引力时出现的无穷大问题。 核心章节聚焦于: 阿斯泰卡(Ashtekar)变量的再诠释: 详细阐述了如何利用规范场论的语言重构广义相对论,引入了“连接”(Connection)和“电场”(Electric Field)变量,为Hamiltonian的量子化奠定了坚实基础。 自旋网络(Spin Networks)与自旋泡沫(Spin Foams): 深入剖析了由罗杰·彭罗斯提出的自旋网络在LQG中的核心作用。自旋网络如何编码量子化的面积和体积算符,构建了离散的时空结构。进而,探讨了自旋泡沫作为自旋网络随时间演化的路径积分配方,如何描述量子时空的动力学演化。 离散时空的物理后果: 分析了LQG对奇点问题的处理,特别是大爆炸奇点如何被“量子反弹”(Big Bounce)所取代的物理情景。讨论了在低能极限下,如何从离散的量子几何中恢复出连续的黎曼几何,以及这一恢复过程中的挑战与限制。 圈量子宇宙学(Loop Quantum Cosmology, LQC): 专门辟章讲解了LQG在宇宙学尺度上的应用,对比了其与标准$Lambda$CDM模型在早期宇宙演化描述上的关键差异,及其对暴胀理论可能性的修正。 第二部分:高维时空与万有理论的追求——弦理论的几何与代数景观 本书的第二部分将焦点转向弦理论(String Theory),将其视为一个更宏大的“万有理论”(Theory of Everything)的候选者。本部分强调弦论不仅仅是粒子物理学的延伸,更是一套深刻的几何与拓扑语言。 主要内容涵盖: 基本弦模型与超对称的必要性: 回顾了玻色弦理论的局限,以及引入费米子以消除量子反常的必然性,从而引出超对称(Supersymmetry)作为连接玻色子与费米子的基本对称性。详细探讨了I型、IIA、IIB、异域(Heterotic)等五种超弦理论的基本结构和它们在九维空间中的嵌入方式。 对偶性(Duality)的革命: 集中论述了弦论中最具启发性的概念之一——对偶性。从T-对偶到S-对偶,解析了不同理论描述在特定极限下如何等价,揭示了弦理论内部的丰富结构。特别是对偶性如何暗示了十维背景并非唯一的描述方式。 膜(Branes)物理学与AdS/CFT对应: 深入分析了D膜(Dirichlet Branes)的物理意义,它们如何充当开放弦的端点,并构成了粒子物理学(如标准模型)在弦论中的低能描述。随后,重点介绍反德西特空间/共形场论(AdS/CFT)对应关系,阐释了它如何将一个高维引力问题(如黑洞动力学)转化为一个低维、无引力的量子场论问题,并讨论了其在强耦合系统研究中的巨大潜力。 卡拉比-丘(Calabi-Yau)几何与紧致化: 探讨了如何通过将多余的六维空间进行紧致化,从而在低能(四维)恢复出我们观测到的物理定律和粒子谱。详细讨论了卡拉比-丘流形的选择对费米子种类和耦合常数的影响,以及“景观问题”(Landscape Problem)的严峻性。 第三部分:统一的挑战与未来方向 最后一部分将理论物理学的两个前沿领域进行直接对话与比较,探讨它们在解决引力量子化问题上的殊途同归与根本差异。 本书批判性地分析了以下关键议题: 1. 背景依赖性与背景独立性: 详细对比了弦论的背景依赖性(即需要预设一个时空背景才能进行计算)与圈量子引力的背景独立性(时空本身是量子化的结果)之间的哲学和技术差异。 2. 黑洞熵的计算: 考察了两个理论如何计算黑洞的贝肯斯坦-霍金(Bekenstein-Hawking)熵。弦论通过对D膜微观态的计数得到精确匹配,而LQG则通过对量子化的视界面几何进行计算,分析两者在不同情景下的适用范围和结果的契合度。 3. 低能极限的恢复: 探究了如何从复杂的弦论或LQG框架中,精确地推导出爱因斯坦的广义相对论和标准模型,这是任何“万有理论”必须跨越的门槛。 4. 实验可检验性: 审视了当前理论在寻找实验证据方面的困境,以及在普朗克尺度之外,是否存在任何低能可观测信号(如对宇宙微波背景的微小扰动、额外维度的痕迹或量子引力修正)的理论预测。 本书旨在为高年级研究生、博士后研究人员以及对基础物理学有深刻理解的读者提供一个全面、深入且不回避争议的视角,推动读者参与到这场定义二十一世纪物理学面貌的伟大探索中。它要求读者具备扎实的微分几何、拓扑学和量子场论基础,以便充分领会其中复杂的数学结构和深刻的物理洞察。

用户评价

评分

关于书中案例和习题的设置,我认为这是本书最具实践指导价值的部分之一。通常这种级别的著作,习题要么过于简单,要么复杂到脱离实际,但这本书的例题设计简直是教科书级别的典范。它们紧密围绕着理论核心,但又巧妙地避开了教科书式的直接套用。我尝试解答了其中关于边界条件设定的几个问题,发现这些问题真正考验的是对物理直觉和数学技巧的综合运用能力。更棒的是,作者在解答部分的处理上非常谨慎,没有直接给出最终答案,而是提供了详尽的解题思路和关键步骤的提示,鼓励读者独立思考。这种“点拨式”的教学方法,对于培养独立解决问题的能力具有不可替代的作用。

评分

我花了整整一个下午的时间,试图梳理一下这本书的叙述逻辑,感觉作者在构建理论框架时采用了非常精妙的“螺旋上升”结构。它不是简单地堆砌公式和定义,而是循序渐进地引导读者进入核心概念。一开始,作者用非常直观的类比和历史背景铺垫了基础,让你在不感到压迫的情况下掌握了必要的数学工具。随后,随着章节的深入,信息的密度和抽象程度逐步提高,但每一次提升都有前文扎实的铺垫作为支撑。这种处理方式极大地降低了初学者望而却步的门槛,同时也为资深研究者提供了深入探索的阶梯。我特别欣赏作者在引入复杂数学结构时,那种仿佛在和你进行一场高水平的、但又耐心十足的对话的叙事风格,让人感觉自己是参与者而非单纯的接受者。

评分

这本书的装帧设计真是深得我心。封面采用了一种哑光的质感,深邃的蓝色调搭配着简洁的白色和金色的字体,透露出一种沉稳而又不失现代感的学术气息。翻开内页,纸张的选择也非常考究,厚实且不反光,长时间阅读下来眼睛也不会感到疲劳。版式布局清晰明了,章节标题和正文之间的留白处理得当,使得阅读的节奏感非常舒适。就连索引和参考文献部分的排版都显得井井有条,查找起来十分方便。细节之处见真章,这本厚重的著作在实体呈现上做到了既有分量感,又不失为一件值得收藏的艺术品。每一次翻阅,都能感受到出版方在图书制作上的匠心独运,这对于严肃的学术书籍来说,无疑是加分项。

评分

这本书的翻译质量,坦白说,是超出我预期的。面对如此高度专业化、充满术语和复杂句式的原文,翻译工作是一项巨大的挑战,但译者团队显然投入了极大的心血。我对比了几个关键术语的翻译,发现他们不仅准确地传达了原文的字面意思,更重要的是,成功地捕捉到了物理概念的精髓和上下文的语境。例如,对于一些在不同理论体系中有细微差别定义的词汇,译者采用了统一且规范的中文表达,避免了阅读中的混淆。流畅度上,中文行文自然流畅,没有那种生硬的“翻译腔”,读起来非常顺口,这极大地提升了阅读体验,让非母语读者也能无障碍地沉浸于前沿的科学探讨之中。

评分

从内容深度来看,这本书的广博程度令人叹为观止。它不仅仅是简单地罗列现有模型,而是深入剖析了各个流派思想的内在矛盾与潜在的统一可能性。书中对模型演化过程的梳理极为详尽,甚至不惜篇幅去探讨那些已经被主流理论所淘汰的早期尝试,这使得读者能够更深刻地理解当前理论为何会以这种形态存在。对于那些试图在某一特定领域钻研的读者来说,这本书提供了一个极佳的宏观视角,让你清楚地知道自己所处的理论高地是建立在怎样一片广袤的知识平原之上的。它成功地在“全面性”与“深度”之间找到了一个近乎完美的平衡点,绝非市面上常见的那些浮光掠影的概论性读物可比。

评分

看名字就知道讲的是大统一理论和超对称,需要学完量子场论再来看。

评分

看名字就知道讲的是大统一理论和超对称,需要学完量子场论再来看。

评分

可以

评分

very good very good

评分

书很不错,物流速度也很快。

评分

看名字就知道讲的是大统一理论和超对称,需要学完量子场论再来看。

评分

哈哈哈哈哈哈哈哈哈哈哈哈哈哈

评分

不错的书,统一理论和超对称的书其中一本吧

评分

很难的,一般人不一定看得懂

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有