内容简介
       Principles and Techniques、Design: Basic Principles and Techniques、The Art of Experimentation、Replication、Blocking、Randomization、Analysis: Basic Principles and Techniques、Planning Experiments、A Checklist for Planning Experiments、Real Experiment——Cotton-Spinning Experiment等等。     
内页插图
          目录
   Preface
1. Principles and Techniques
1.1. Design: Basic Principles and Techniques
1.1.1. The Art of Experimentation
1.1.2. Replication
1.1.3. Blocking
1.1.4. Randomization
1.2. Analysis: Basic Principles and Techniques
2. Planning Experiments
2.1. Introduction
2.2. A Checklist for Planning Experiments
2.3. A Real Experiment——Cotton-Spinning Experiment
2.4. Some Standard Experimental Designs
2.4.1. Completely Randomized Designs
2.4.2. Block Designs
2.4.3. Designs with Two or More Blocking Factors
2.4.4. Split-Plot Designs
2.5. More Real Experiments
2.5.1. Soap Experiment
2.5.2. Battery Experiment
2.5.3. Cake-Baking Experiment
Exercises
3. Designs with One Source of Variation
3.1. Introduction
3.2. Randomization
3.3. Model for a Completely Randomized Design
3.4. Estimation of Parameters
3.4.1. Estimable Functions of Parameters
3.4.2. Notation
3.4.3. Obtaining Least Squares Estimates
3.4.4. Properties of Least Squares Estimators
3.4.5. Estimation ofo2
3.4.6. Confidence Bound for ~r2
3.5. One-Way Analysis of Variance
3.5.1. Testing Equality of Treatment Effects
3.5.2. Use of p-Values
3.6. Sample Sizes
3.6.1. Expected Mean Squares for Treatments
3.6.2. Sample Sizes Using Power of a Test
3.7. A Real Experiment——-Soap Experiment, Continued
3.7.1. Checklist, Continued
3.7.2. Data Collection and Analysis
3.7.3. Discussion by the Experimenter
3.7.4. Further Observations by the Experimenter
3.8. Using SAS Software
3.8.1. Randomization
3.8.2. Analysis of Variance
Exercises
4. Inferences for Contrasts and Treatment Means
4.1. Introduction
4.2. Contrasts
4.2.1. Pairwise Comparisons
4.2.2. Treatment Versus Control
4.2.3. Difference of Averages
4.2.4. Trends
4.3. Individual Contrasts and Treatment Means
4.3.1. Confidence Interval for a Single Contrast
4.3.2. Confidence Interval for a Single Treatment Mean
4.3.3. Hypothesis Test for a Single Contrast or Treatment Mean
4.4. Methods of Multiple Comparisons
4.4.1. Multiple Confidence Intervals
4.4.2. Bonferroni Method for Preplanned Comparisons
4.4.3. Scheff6 Method of Multiple Comparisons
4.4.4. Tukey Method for All Pairwise Comparisons
4.4.5. Dunnett Method for Treatment-Versus-Control Comparisons
4.4.6. Hsu Method for Multiple Comparisons with the Best
reatment
4.4.7. Combination of Methods
4.4.8. Methods Not Controlling Experimentwise Error Rate
4.5. Sample Sizes
4.6. Using SAS Software
4.6.1. Inferences on Individual Contrasts
4.6.2. Multiple Comparisons
Exercises
5. Checking Model Assumptions
5.1. Introduction
5.2. Strategy for Checking Model Assumptions
5.2.1. Residuals
5.2.2. Residual Plots
5.3. Checking the Fit of the Model
5.4. Checking for Outliers
5.5. Checking Independence of the Error Terms
5.6. Checking the Equal Variance Assumption
5.6.1. Detection of Unequal Variances
5.6.2. Data Transformations to Equalize Variances
5.6.3. Analysis with Unequal Error Variances
5.7. Checking the Normality Assumption
5.8. Using SAS Software
5.8.1. Using SAS to Generate Residual Plots
5.8.2. Transforming the Data
Exercises
6. Experiments with Two Crossed Treatment Factors
6.1. Introduction
6.2. Models and Factorial Effects
6.2.1. The Meaning of Interaction
6.2.2. Models for Two Treatment Factors
6.2.3. Checking the Assumptions on the Model
6.3. Contrasts
6.3.1. Contrasts for Main Effects and Interactions
6.3.2. Writing Contrasts as Coefficient Lists
6.4. Analysis of the Two-Way Complete Model
6.4.1. Least Squares Estimators for the Two-Way Complete Model
6.4.2. Estimation ofo~ for the Two-Way Complete Model
6.4.3. Multiple Comparisons for the Complete Model
6.4.4. Analysis of Variance for the Complete Model
6.5. Analysis of the Two-Way Main-Effects Model
6.5.1. Least Squares Estimators for the Main-Effects Model
6.5.2. Estimation ofa2 in the Main-Effects Model
6.5.3. Multiple Comparisons for the Main-Effects Model
6.5.4. Unequal Variances
6.5.5. Analysis of Variance for Equal Sample Sizes
6.5.6. Model Building
6.6. Calculating Sample Sizes
6.7. Small Experiments
6.7.1. One Observation per Cell
6.7.2. Analysis Based on Orthogonal Contrasts
6.7.3. Tukeys Test for Additivity
6.7.4. A Real Experiment——Air Velocity Experiment
6.8. Using SAS Software
6.8.1. Contrasts and Multiple Comparisons
6.8.2. Plots
6.8.3. One Observation per Cell
Exercises
7. Several Crossed Treatment Factors
7.1. Introduction
7.2. Models and Factorial Effects
7.2.1. Models
7.2.2. The Meaning of Interaction
7.2.3. Separability of Factorial Effects
7.2.4. Estimation of Factorial Contrasts
7.3. Analysis——Equal Sample Sizes
7.4. A Real Experiment——Popcorn-Microwave Experiment
7.5. One Observation per Cell
7.5.1. Analysis Assuming That Certain Interaction Effects Are egligible
7.5.2. Analysis Using Normal Probability Plot of Effect Estimates
7.5.3. Analysis Using Confidence Intervals
7.6. Design for the Control of Noise Variability
7.6.1. Analysis of Design-by-Noise Interactions
7.6.2. Analyzing the Effects of Design Factors on Variability .
7.7. Using SAS Software
7.7.1. Normal Probability Plots of Contrast Estimates
7.7.2. Voss-Wang Confidence Interval Method
7.7.3. Identification of Robust Factor Settings
7.7.4. Experiments with Empty Cells
Exercises
8. Polynomial Regression
8.1. Introduction
8.2. Models
8.3. Least Squares Estimation (Optional)
8.3.1. Normal Equations
……
9. Analysis of Covariance
10. Complete Block Designs
11. Incomplete Block Designs
12. Designs with Two Blocking Factors
13. Confounded Two-Level Factorial Experiments
14. Confounding in General Factorial Experiments
15. Fractional Factorial Experiments
16. esponse Surface Methodology
17. andom Effects and Variance Components
18. estde Models
19. plit-Plot Designs
A. ables
Bibliography
Index of Authors
Index of Experiments
Index of Subjects      
精彩书摘
       In the analysis of data, it is desirable to provide both graphical and statistical analyses. Plotsthat illustrate the relative responses of the factor settings under study allow the experimenterto gain a feel for the practical implications of the statistical results and to communicateeffectively the results of the experiment to others. In addition, data plots allow the proposedmodel to be checked and aid in the identification of unusual observations, as discussed inChapter 5. Statistical analysis quantifies the relative responses of the factors, thus clarifyingconclusions that might be misleading or not at all apparent in plots of the data.
    The purpose of an experiment can range from exploratory (discovering new importantsources of variability) to confirmatory (confirming that previously discovered sources ofvariability are sufficiently major to warrant further study), and the philosophy of the analysisdepends on the purpose of the experiment. In the early stages of experimentation the analysismay be exploratory, and one would plot and analyze the data in any way that assists in theidentification of important sources of variation. In later stages of experimentation, analysisis usually confirmatory in nature. A mathematical model of the response is postulated andhypotheses are tested and confidence intervals are calculated.   In this book, we use linear models to model our response and the methodofleast squaresfor obtaining estimates of the parameters in the model. These are described in Chapter 3.Our models include random "error variables" that encompass all the sources of variabilitynot explicity present in the model. We operate under the assumption that the error termsare normally distributed. However, most of the procedures in this book are generally fairlyrobust to nonnormality, provided that there are no extreme observations among the data.   It is rare nowadays for experimental data to be analyzed by hand. Most experimentersand statisticians have access to a computer package that is capable of producing, at the veryleast, a basic analysis of data for the simplest experiments. To the extent possible, for eachdesign discussed, we shall present useful plots and methods of analysis that can be obtainedfrom most statistical software packages. We will also develop many of the mathematicalformulas that lie behind the computer analysis. This will enable the reader more easilyto appreciate and interpret statistical computer package output and the associated manuals.Computer packages vary in sophistication, flexibility, and the statistical knowledge requiredof the user. The SAS software is one of the better packages for analyzing experimental data.It can handle every model discussed in this book, and although it requires some knowledgeof experimental design on the part of the user, it is easy to learn. We provide some basicSAS statements and output at the end of most chapters to illustrate data analysis.      
前言/序言
     Our initial motivation for writing this book was the observation from various students thatthe subject of design and analysis of experiments can seem like "a bunch of miscellaneoustopics." We believe that the identification of the objectives of the experiment and the practicalconsiderations governing the design form the heart of the subject matter and serve as thelink between the various analytical techniques. We also believe that learning about designand analysis of experiments is best achieved by the planning, running, and analyzing of asimple experiment.
  With these considerations in mind, we have included throughout the book the detailsof the planning stage of several experiments that were run in the course of teaching ourclasses. The experiments were run by students in statistics and the applied sciences and aresufficiently simple that it is possible to discuss the planning of the entire experiment in afew pages, and the procedures can be reproduced by readers of the book. In each of theseexperiments, we had access to the investigators actual report, including the difficultiesthey came across and how they decided on the treatment factors, the needed number ofobservations, and the layout of the design. In the later chapters, we have included detailsof a number of published experiments. The outlines of many other student and publishedexperiments appear as exercises at the ends of the chapters. omplementing the practical aspects of the design are the statistical aspects of the anal-ysis. We have developed the theory of estimable functions and analysis of variance withsome care, but at a low mathematical level. Formulae are provided for almost all analyses sothat the statistical methods can be well understood, related design issues can be discussed,and computations can be done by hand in order to check computer output.
  We recommend the use of a sophisticated statistical package in conjunction with thebook. Use of software helps to focus attention on the statistical issues rather than on thecalculation. Our particular preference is for the SAS sof~vare, and we have included theelementary use of this package at the end of most chapters. Many of the SAS program filesand data sets used in the book can be found at www.springer-ny.com. However, the book canequally well be used with any other statistical package. Availability of statistical soRwarehas also helped shape the book in that we can discuss more complicated analyses——theanalysis of unbalanced designs, for example.    
				
 
				
				
					好的,这是一份关于《实验设计与分析》一书的图书简介,内容详尽,力求展现其学术深度与实用价值,同时避免提及AI生成。  ---  《实验设计与分析》(Design and Analysis of Experiments)  一部全面而深入的统计学与方法论专著  本书《实验设计与分析》是一部旨在为读者提供坚实理论基础和精湛实践技能的权威著作。它系统地梳理了从经典到前沿的实验设计原理、方法论和统计分析技术。全书内容丰富,结构严谨,不仅适用于统计学、工程学、生命科学、医学、心理学及社会科学等领域的学生和研究人员,也是致力于提升数据驱动决策能力的专业人士不可或缺的参考指南。  核心理念:从问题到洞察的系统路径  本书的核心目标是指导读者如何科学、高效地组织研究,确保实验结果的有效性、可靠性和可推广性。我们深知,一个精心设计的实验是得出可信结论的前提,而恰当的分析则是解锁数据深层含义的关键。因此,本书的编排紧密围绕“设计—实施—分析—解释”这一完整的科学研究循环展开。  第一部分:实验设计的基石与原理  本部分深入探讨了实验设计的基本概念和核心原则。我们将从统计推断的本质出发,阐述随机化、重复和局部控制(或区组化)这三大支柱在构建有效实验中的作用。     统计基础回顾: 针对需要快速回顾或建立基础的读者,本章提供了必要的概率论、随机变量分布(如正态分布、泊松分布、二项分布)以及参数估计、假设检验等核心统计学知识的综述。重点强调统计功效(Power)和显著性水平的选择如何影响实验的决策质量。    实验的要素与术语: 详细界定了因子(Factors)、水平(Levels)、响应变量(Responses)、处理组合(Treatments)以及实验单元(Experimental Units)等关键术语,确保读者对实验构建的元素有清晰的认知。    完全随机化设计(CRD): 作为最基础的模型,CRD的适用场景、模型构建、方差分析(ANOVA)的原理及其实施步骤进行了详尽的阐述,并探讨了其局限性。  第二部分:经典实验模型与高级布局  本部分是本书的重点,系统介绍了在不同研究情境下最常用且功能强大的实验设计模型。     随机化区组设计(RBD): 详细解释了如何通过区组化来处理已知的或预期的异质性来源,提高实验的精确度。书中包含了如何选择区组大小、如何进行模型拟合和残差分析的实例。    拉丁方设计(LSD): 探讨了在需要同时控制两个异质性源(行与列)的场景中LSD的应用。同时,本书深入分析了LSD在存在缺失数据或非正交模型时的处理方法,强调了其在农业试验和工业质量控制中的价值。    析因设计(Factorial Designs): 这是理解多因子交互作用的基石。本书详尽地展示了$2^k$、$3^k$以及混合因子设计的构建、分析和解释。特别强调了交互作用的含义及其对主效应解释的影响,并介绍了部分析因设计(Fractional Factorial Designs)在筛选大量因子时的效率优势。    嵌套设计与重复测量设计(Nested and Repeated Measures Designs): 针对复杂的分层结构数据(如多级抽样或同一受试者在不同时间点的测量),本书介绍了如何应用混合效应模型来正确处理组内相关性,避免得出误导性的标准误估计。  第三部分:应对复杂性和非标准情况  现代研究往往需要处理更复杂的实验结构和数据特征。本部分聚焦于应对这些挑战的专业技术。     不完全区组设计(Incomplete Block Designs, IBD): 针对处理数过多而无法在一个区组内包含所有处理的场景,本书详细介绍了平衡不完全区组设计(BIBD)和部分平衡不完全区组设计(PBIBD)的构造、效率评估和数据分析,特别是如何利用损失函数最小化原则。    响应曲面法(Response Surface Methodology, RSM): 专为工艺优化和系统探索而设计。本书从中心复合设计(CCD)和Box-Behnken设计入手,详细阐述了如何通过二次多项式模型拟合,找到最优的操作条件,实现精细化控制。    交叉设计(Crossover Designs): 在医学和药理学领域极为重要。本书全面覆盖了基本的两周期交叉设计,并扩展到多周期和多序列交叉设计,重点讲解了如何处理序列效应(Carryover Effects)和如何进行必要的正交性检查。  第四部分:统计分析与模型诊断  实验设计方法的有效性最终依赖于稳健的统计分析。本书将统计软件的应用与理论推导紧密结合。     方差分析(ANOVA)的深入探讨: 不仅停留在单因素和多因素ANOVA的表层,还深入讲解了效应模型的建立(固定效应与随机效应)、模型选择的标准(如AIC/BIC)以及如何进行事后检验(Post-hoc Tests,如Tukey, Dunnett, Bonferroni)。    模型假设的检验与修正: 强调了ANOVA模型的四大基本假设(正态性、方差齐性、独立性)。本书详细指导读者如何通过残差图进行诊断,以及在假设不满足时如何选择替代方法,如数据变换(Transformation)或非参数检验。    回归分析在实验中的应用: 展示了如何将方差分析框架转化为线性模型回归的视角,特别是对于协方差分析(ANCOVA),解释了协变量(Covariates)如何帮助提高实验精度。  总结与展望  《实验设计与分析》力求成为一本既具有深厚理论底蕴,又极具操作指南价值的教材。它不仅仅是一本统计公式的汇编,更是一部指导研究人员如何“像科学家一样思考”的指南。通过对大量真实世界案例的剖析,读者将学会如何根据研究目标和资源限制,量身定制最优的实验方案,并以最可靠的统计方法解析数据,从而确保研究发现的科学严谨性和影响力。  本书的结构设计,旨在引导读者逐步建立起一个全面的实验科学思维体系,最终目标是赋能读者在任何领域内,都能设计出经得起推敲、足以支持决策的有效实验。