内容简介
The last thirty years have seen an enormous advance in our understanding of the microscopic world. We now have a convincing picture of the fundamental struc-ture of observable matter in terms of certain point-like elementary particles. We also have a comprehensive theory describing the behaviour of and the forces between these elementary particles, which we believe provides a complete and correct description of nearly all non-gravitational physics.
Matter, so it seems, consists of just two types of elementary particles: quarks and leptons. These are the fundamental building blocks of the material world, out of which we ourselves are made. The theory describ-ing the microscopic behaviour of these particles has,over the past decade or so, become known as the 'Standard Model', providing as it does an accurate account of the force of electromagnetism, the weak nuclear force (responsible for radioactive decay), and the strong nuclear force (which holds atomic nuclei together). The Standard Model has been remarkably successful; upuntil a year or two ago all experimental tests have verified the detailed predictions of the theory.
The Standard Model is based on the principle of 'gauge symmetry', which asserts that the properties and interactions of elementary particles are governed by certain fundamental symmetries related to familiar conservation laws.
内页插图
目录
Preface
Part 1 Introduction
1 Matter and light
2 Special relativity
3 Quantum mechanics
4 Relativistic quantum theory
Part 2 Basic particle physics
5 The fundamental forces
6 Symmetry in the microworld
7 Mesons
8 Strange particles
Part 3 Strong interaction physics
9 Resonance particles
10 SU(3) and quarks
Part 4 Weak interaction physics I
11 The violation of parity
12 Fermi's theory of the weak interactions
13 Two neutrinos
14 Neutral kaons and CP violation
Part 5 Weak interaction physics II
15 The current-current theory of the weak interactions
16 An example leptonic process:electron-neutrino scattering
17 The weak interactions of hadrons
18 The W boson
Part 6 Gauge theory of the weak interactions
19 Motivation for the theory
20 Gauge theory
21 Spontaneous symmetry breaking
22 The Glashow-Weinberg-Salam model
23 Consequences of the model
24 The hunt for the W, Z0 bosons
Part 7 Deep inelastic scattering
25 Deep inelastic processes
26 Electron-nucleon scattering
27 The deep inelastic microscope
28 Neutrino-nucleon scattering
29 The quark model of the structure functions
Part 8 Quantum chromodynamics-the theory of quarks
30 Coloured quarks
31 Colour gauge theory
32 Asymptotic freedom
33 Quark confinement
Part 9 Electron-positron collisions
34 Probing the vacuum
35 Quarks and charm
36 Another generation
Part 10 The Standard Model and beyond
37 The Standard Model of particle physics
38 Precision tests of the Standard Model
39 Flavour mixing and CP violation revisited
40 The hunt for the Higgs boson
41 Neutrino masses and mixing
42 Is there physics beyond the Standard Model?
43 Grand unification
44 Supersymmetry
45 Particle physics and cosmology
46 Superstrings
Appendices
1 Units and constants
2 Glossary
3 List of symbols
4 Bibliography
5 Elementary particle data
Name index
Subject index
精彩书摘
In order to understand the weak interaction in greater depth, we need to first delve further into the properties of relativistic fermions. In Section 4.2,we Jeamt that relativistic fermions are described by two-component spinors (with another two-component spinor for the antiparticle). In the Newtonian limit,when fermions move slowly, these two components can be interpreted as the two spin states of the fermion: the fermion can either be spin-up or spin-down. However,when the fermions are moving close to the speed of light, the notion of spin is no longer so useful and we need a new way in which to classify the two fermion states. In turns out that there are two useful ways to do this. The first, which is closely related to spin, is to define the helicity as the component of the fermion's spin in the direction of motion of the fermion. The spin can either be aligned with or against the momentum, and the fermion is referred to as being in the helicity-plus or helicity-minus state respectively.
……
前言/序言
粒子物理学概念(第3版)内容概述 本书《粒子物理学概念(第3版)》旨在为具有一定物理学基础的读者,特别是高年级本科生和研究生,提供一个全面而深入的粒子物理学导论。全书内容紧密围绕粒子物理学的核心理论框架、实验发现及其对基本物质和相互作用理解的演进展开。 第一部分:基础回顾与标准模型的建立 本书的开篇部分着重于对理解粒子物理学所需的基础知识进行回顾与铺垫。这不仅包括狭义相对论的碰撞动力学——特别是四动量、洛伦兹变换在粒子反应中的应用——以及量子力学中的基本概念,如波函数、薛定谔方程的推广应用,更重要的是引入了粒子物理学特有的数学工具和框架。 随后,作者系统地构建了粒子物理学的标准模型(Standard Model, SM)。这一部分详细阐述了费米子(夸克和轻子)的分类及其性质,特别是它们如何适应于已知的基本相互作用。重点讲解了描述这些相互作用的规范场论基础。读者将学习到如何从局域对称性原理出发,推导出量子电动力学(QED)和描述强核力的量子色动力学(QCD)。 在标准模型的结构性讨论中,书中详尽剖析了规范群 $SU(3)_C imes SU(2)_L imes U(1)_Y$ 的物理意义。对称性破缺机制——特别是希格斯机制——被深入探讨,解释了如何为规范玻色子(W和Z玻色子)和费米子赋予质量,同时保持规范理论的自洽性。书中对于汤川耦合(Yukawa coupling)在费米子质量产生中的作用进行了细致的描述。 第二部分:强相互作用的深入分析 强相互作用是粒子物理学中最具挑战性的领域之一。本书用相当的篇幅专门讨论了QCD的特性。 渐近自由(Asymptotic Freedom): 理论部分详细解释了为什么在高能区(小距离)夸克和胶子之间的耦合常数变弱的现象。这部分内容通常会结合重整化群方程(Renormalization Group Equations)来展示 $alpha_s$ 的能量依赖性。 夸克禁闭(Color Confinement): 书中探讨了为什么我们观察不到自由的夸克和胶子,而只能观察到强子(如质子和中子)。讨论会涉及到晶格QCD(Lattice QCD)的初步概念,以及弦论或格点模型对禁闭现象的解释尝试。 强子结构: 本部分深入到强子的内部结构。读者将学习到如何使用费曼图(Feynman Diagrams)来计算高能散射截面。对于低能强子物理,则会介绍非相对论性夸克模型(Non-Relativistic Quark Model)来解释强子谱,例如,如何通过计算质子和中子的磁矩来验证夸克模型的成功之处。同时,也会介绍深度非弹性散射(Deep Inelastic Scattering, DIS)实验如何揭示了质子内部的动量分布函数(Parton Distribution Functions, PDFs)。 第三部分:电弱相互作用与中微子物理 电弱理论的整合是粒子物理学的一大里程碑。本书详细介绍了如何将电磁力和弱核力统一起来。这包括对弱相互作用的细节分析,例如,弱宇称宇称性(Parity Violation)的实验证据,以及区分左手和右手费米子在弱相互作用中的区别待遇。 中微子振荡(Neutrino Oscillation): 这是一个自标准模型建立以来最显著的“新物理”迹象。本书详细介绍了中微子获得质量的实验证据,从太阳中微子问题到大气中微子实验。书中将引入中微子质量矩阵和混合角(如PMNS矩阵),解释了三种味中微子如何在传播中相互转换的机制。 第四部分:实验技术与探测 为了使理论描述更具象化,本书包含对粒子物理实验技术的介绍。这部分内容侧重于描述高能物理实验的原理,而非具体的工程细节。 粒子加速器: 简要介绍回旋加速器、同步加速器的工作原理,以及对撞机(如对撞束能量的提升)在探索更高质量粒子方面的作用。 粒子探测器: 详细说明不同类型探测器的基本物理过程,例如,粒子如何在电磁量热计、强子量热计、漂移室或硅微条探测器中留下可被测量的信号。对于带电粒子,如何利用磁场偏转来测量其动量;对于中性粒子,如何测量其能量。对事例重建(Event Reconstruction)的基本流程也会有所涉及。 第五部分:超越标准模型(BSM)的展望 标准模型虽然在描述已观测现象方面取得了巨大成功,但它并非终极理论。本书的最后部分着眼于现代物理学面临的未解之谜,并探讨了主要的“新物理”候选理论。 质量问题与层级问题(Hierarchy Problem): 详细讨论为什么希格斯玻色子质量如此之小,以及如何通过超对称性(Supersymmetry, SUSY)等理论来提供理论上的天然解释。 暗物质与暗能量: 概述宇宙学证据(如宇宙微波背景、星系旋转曲线)对标准模型之外的新粒子的需求,并讨论例如WIMPs(弱相互作用重粒子)等暗物质候选者。 大统一理论(GUTs)的初步探讨: 简要介绍将强、弱、电磁力在高能下统一的尝试,例如 $SU(5)$ 或 $SO(10)$ 模型的理念,以及这些理论对质子衰变的预言。 全书的叙述风格力求清晰、严谨,强调物理图像的构建,并穿插了必要的数学推导,旨在为读者构建一个坚实且与前沿实验紧密结合的粒子物理学知识体系。