具体描述
内容简介
本书全面综述了形状记忆聚合物(SMPs)及其复合材料的基本概念、类型、结构。此外,进一步着重介绍了形状记忆聚合物在航天、织物、生物医药等相关领域的应用。通过特征鲜明的科学或工业事例,阐述了形状记忆聚合物及其复合材料中的科学、加工和技术问题。
本书共12章,可以分为三部分。第一部分包括第1章,主要对形状记忆聚合物的基本概念、结构及应用给出了概述。第二部分包括中间6章,主要介绍了形状记忆聚合物及其复合材料的结构分类、电学和热力学特性以及其形状记忆效应等。第三部分包括最后5章,主要阐述了形状记忆聚合物及其复合材料的潜在应用。 作者简介
朱辉,1975年5月生,俄罗斯族,新疆维吾尔自治区塔城市人。1995年至今在新疆塔城地区中级人民法院工作,现任新疆塔城地区中级人民法院审判委员会委员、民事审判第一庭庭长、四级高级法官。2004年获兰州大学法律硕士;2011年获中南财经政法大学法学博士。在《法律适用》,《法学杂志》、《人民法院报》、《新疆法学》等刊物上发表学术论文多篇。 目录
前言
编辑
编者
1 形状记忆聚合物的综述 Marc Behl and Andreas Lendlein
2 形状记忆聚合物的结构分类 Hong-Yan Jiang and Annette M.Schmidt
3 热力学行为和建模方法 Hang Jerry Qi and Martin L.Dunn
4 形状记忆聚合物(二/三-段) 的热力学特性和建模方法 Karl Kratz,Wolfgang Wangermaier,Matthias Heuchel,and Andreas Lendlein
5 掺杂炭黑的PU形状记忆聚合物的电、热力学及形状记忆性能 Wei Min Huang and Bin Yang
6 多功能形状记忆聚合物及其驱动方法 Jinsong Leng,Haibao Lu and Shanyi Du
7 形状记忆聚合物复合材料 Jinsong Leng,Xin Lan and Shanyi Du
8 形状记忆聚合物在航天领域的应用 Yanju Liu and Jinsong Leng
9 形状记忆聚合物泡沫及其应用 Witold M.Sokolowski
10 形状记忆聚合物纺织品 Jinlian Hu
11 形状记忆聚合物在生物医药领域的应用 Witold M.Sokolowski and Jinsong Leng
12 形状记忆聚合物的崭新应用及未来 Wei Min Huang
索引 精彩书摘
Overview of Shape-Memory Polymers
Marc Behl and Andreas Lendlein*
Center for Biomaterial Development, Institute for Polymer
Research, GKSS Research Center, Teltow, Germany
CONTENTS
1.1 Introduction ....................................................................................................
1
1.2 Definition of Actively Moving Polymers ....................................................
2
1.3 Shape-Memory Polymer Architectures ......................................................
3
1.3.1
Thermally Induced Dual-Shape Effect ...........................................
4
1.3.1.1
Thermoplastic Shape-Memory Polymers ........................
4
1.3.1.2
Covalently Cross-Linked Shape-Memory
Polymers ...............................................................................6
1.3.2
Indirect Triggering of Thermally Induced Dual-Shape
Effect ....................................................................................................8
1.4 Light-Induced Dual-Shape Effect .............................................................. 11
1.5 Triple-Shape Polymers ................................................................................12
1.6 Outlook .......................................................................................................... 14
References ...............................................................................................................15
1.1 Introduction
The ability of polymers to respond to external stimuli such as heat or light is of
high scientific and technological significance. Their stimuli-sensitive behavior
enables such materials to change certain of their macroscopic properties such
as shape, color, or refractive index when controlled by an external signal. The
implementation of the capability to actively move into polymers has attracted
the interest of researchers, especially in the last few years, and has been
achieved in polymers as well as in gels. Sensitivity to heat, light, magnetic
fields, and ion strength or pH value was also realized in gels [1]. In nonswollen polymers, active movement is stimulated by exposure to heat or light and
could also be designed as a complex movement with more than two shapes.
* To whom correspondence should be addressed. E-mail: andreas.lendlein@gkss.de
Besides their scientifi c significance, such materials have a high innovation
potential and can be found, e.g., in smart fabrics [2?4], heat-shrinkable tubes
for electronics or films for packaging [5], self-deployable sun sails in space-
crafts [6], self-disassembling mobile phones [7], intelligent medical devices [8],
and implants for minimally invasive surgery [9?11]. These are only examples
and cover only a small region of potential applications. Actively moving polymers may even reshape the design of products [12]. In this chapter, different classes of actively moving materials are introduced with an emphasis on
shape-memory polymers. The fundamental principles of the different functions are explained and examples for specific materials are given.
1.2 Definition of Actively Moving Polymers
Actively moving polymers are able to respond to a specific stimulus by changing their shape. In general, two types of functions have to be distinguished:
the shape-memory and the shape-changing capability. In both cases, the
basic molecular architecture is a polymer network while the mechanisms
underlying the active movement differ [13,14]. Both polymer concepts contain either molecular switches or stimuli-sensitive domains. Upon exposure
to a suitable stimulus, the switches are triggered resulting in the movement
of the shaped body.
Most shape-memory polymers are dual-shape materials exhibiting two distinct shapes. They can be deformed from their original shape and temporarily
assume another shape. This temporary shape is maintained until the shaped
body is exposed to an appropriate stimulus. Shape recovery is predefi ned
by a mechanical deformation leading to the temporary shape. So far, shape-
memory polymers induced by heat or light have been reported. Furthermore,
the concept of the thermally induced shape-memory effect has been extended
by indirect actuation, e.g., irradiation with IR-light, application of electrical
current, exposure to alternating magnetic fields, and immersion in water.
Besides exhibiting two distinct shapes, an important characteristic of
shape-memory polymers is the stability of the temporary shape until the
point of time of exposure to the suitable stimulus and the long-term stability
of the (recovered) permanent shape, which stays unchanged even when not
exposed to the stimulus anymore. Finally, different temporary shapes, substantially differing in their three-dimensional shape, can be created for the
same permanent shape in subsequent cycles.
In contrast to shape-memory polymers, shape-changing polymers change
their shape gradually, i.e., shrink or bend, as long as they are exposed to
a suitable stimulus. Once the stimulus is terminated, they recover their
original shape. This process of stimulated deformation and recovery can
be repeated several times, while the geometry, i.e., of how a workpiece is
moving, is determined by its original three-dimensional shape as the effect
is based on a phase transition in a liquid crystalline elastomer network. Heat,
light, and electromagnetic fields have been reported as suitable stimuli for
shape-changing polymers.
1.3 Shape-Memory Polymer Architectures
The shape-memory effect is not an intrinsic material property, but occurs
due to the combination of the polymer’s molecular architecture and the
resulting polymer morphology in combination with a tailored processing
and programming technology for the creation of the temporary shape. To
enable the shape-memory effect, a polymer architecture, which consists of
netpoints and molecular switches that are sensitive to an external stimulus,
is required.
The permanent shape in such a polymer network is determined by the net-
points that are cross-linked by chain segments (Figure 1.1). Netpoints can
be realized by covalent bonds or intermolecular interactions; hence, they are
either of a chemical or a physical nature. While chemical cross-linking can be
realized by suitable cross-linking chemistry, physical cross-linking requires
a polymer morphology consisting of at least two segregated domains. In
such a morphology, the domains providing the second-highest thermal transition, Ttrans, act as switching domains, and the associated segments of the
multiphase polymers are therefore called “switching segments,” while the
Extension
and
cooling
Heating
Switching segment, relaxed
Netpoint
Ttrans
°C
Ttrans
°C
Ttrans
°C
Switching segment, elongated and fixed
Shape (B)
Shape (A)
Shape (B)
FIGURE 1.1
Molecular mechanism of the thermally induced shape-memory effect. Ttrans is the thermal transition temperature of the switching phase. (Adapted from Lendlein, A. and Kelch, S., Angew.
Chem. Int. Ed., 41(12), 2034, 2002. With permission.)
domains associated-to-the highest thermal transition, Tperm, act as physical
netpoints. The segments forming such hard domains are known as “hard
segments.” These switches must be able to fix the deformed shape temporarily under conditions relevant to the particular application. In addition to
switching domains, they can be realized by functional groups that are able to
reversibly form and cleave covalent cross-links. The thermal transition, Ttrans,
related to the switching domains can be a melting transition (Tm), or a glass
transition (Tg). Accordingly, the temporary shape is fixed by a solidifi cation of
the switching domains by crystallization or vitrification. In suitable polymer
architectures, these switching domains can be formed either by side chains
that are only connected to one netpoint and do not contribute to the overall
elasticity of the polymer, or by chain segments linking two netpoints and
contributing to the overall elastic behavior. In both cases, the temporary stabilization is caused by the aggregation of the switching segments. Recently,
blends of two thermoplastic polymers having shape-memory capability
were presented, in which the segments forming the hard and the switching
domains consisted of two different multiblock copolymers.
Functional groups that are able to reversibly form and cleave covalent
bonds controlled by an external stimulus can be used as molecular switches
providing chemical bonds. The introduction of functional groups that are
able to undergo a photoreversible reaction, e.g., cinnamic acid (CA) groups,
extends the shape-memory technology to light, which acts as a stimulus.
Shape-memory properties are quantified in cyclic stimuli-specifi c mechanical tests [15,16] in which each cycle consists of the programming of the test
specimen and the recovery of its permanent shape. Different test protocols
have been developed for the programming and recovery (see Chapter 3)
from which the shape-memory properties are quantified by determining the
shape-fixity ratio (Rf) for the programming and the shape-recovery ratio (Rr)
for the recovery process. In thermally induced shape-memory polymers, the
determination of the switching temperature, Tsw, characterizing the stress-
free recovery process can be included in the test protocol.
1.3.1 Thermally Induced Dual-Shape Effect
1.3.1.1 Thermoplastic Shape-Memory Polymers
An important group of physically cross-linked shape-memory polymers are
linear-block copolymers. Block copolymers with Ttrans = Tm, and where polyurethanes and polyether-ester are prominent examples for such materials, are
reviewed by Lendlein and Kelch [15]. In polyesterurethanes, oligourethane
segments act as hard segments, while polyester, e.g., poly(ε-caprolactone)
(Tm= 44°C.55°C) forms the switching segment [17?19]. The phase separation
and the domain orientation of poly(ε-caprolactone)-based polyesterurethanes
could be determined by Raman spectroscopy using polarized light [20]. In
polyesterurethanes where poly(hexylene adipate) provides the switching
segment, and a hard segment is formed by the 4,4′-diphenyldiisocyanate and
the 1,4-butanediol, the influence of the Mn of the switching segment as well
as the hard segment content on the shape-memory properties were investigated [21]. The Rf increases with the increasing Mn of the switching segment
but decreases with the increasing hard segment content. At the same time,
the Rr decreases with the increasing Mn of the switching segment and the
increasing hard segment content. Fibers from polyesterurethanes exert significantly higher recovery stress in the fiber axis when compared to the polymer
fi lms [22]. The exchange of the chain extender 1,4-butanediol with ethylenediamine can result in improved values of the Rf as urea-type bonding of the
ethylene diamine can restrict the chain rotation and strengthen the physical
interactions between the polyurethane segments [23]. Additionally, the shape-
memory properties of polyurethanes can be enhanced by the addition of a
second soft segment in small amounts so that segmented polyurethanes are
obtained; e.g., 5 wt% of poly(ethylene glycol) can be added during synthesis to
the poly(tetramethylene glycol) [24]. The addition of N-methyldiethanolamine
as a cationomer in the hard segment of the segmented polyurethanes from
poly(ε-caprolactone), 4,4′-diphenylmethane diisocyanate and 1,4-butanediol,
simultaneously improved the Rf and the Rr. This effect is attributed to an
improved switching segment crystallization [25]. A similar effect was found
in copolyester-based ionomers obtained by the bulk polymerization of adipic acid and mixed monomers of bis(poly(oxyethylene)) sulfonated dimethyl
fumarate and 1,4-butanediol [26]. The storage modulus of the rubbery plateau
was significantly increased with increasing ionomer content and recovery
rates of up to 95% were determined. Melt blending of an elastomeric ionomer
based on the zinc salt of sulfonated poly{ethylene-r-propylene-r-(5-ethylidene2-norbornene)} and low molecular mass fatty acids results in polymer networks in which the nanophase-separated ionomer provides the permanent
network physically cross-linked by the zinc salt, and the fatty acids provide
nanophases, whose melting triggers the shape recovery [27]. Polycarbonate
segments containing polyurethanes were synthesized by the copolymerization of ethylene oxide in the presence of CO2 catalyzed by a polymer-supported bimetallic catalyst, which yields an aliphatic polycarbonate diol. This
macrodiol was further processed by the prepolymer method into a shape-
memory polyurethane [28].
Thermoplastic multiblock copolymers with polydepsipeptide- and poly(εcaprolactone)-segments providing shape-memory capability were synthesized via the coupling of oligodepsipeptide diol and oligo(ε-caprolactone)
diol (PCL-diol) using a racemic mixture of 2,2,4- and 2,4,4-trimethylhexamethylene diisocyanate (TMDI). The multiblock copolymers were developed
for biomedical applications and are supposed to degrade into less harmless
degradation products than polyester-based materials. In the polymer molecules, the PCL block has the function of a switching segment forming the
switching domains, that fix the temporary shape by crystallization [29].
Recently, binary polymer blends from two different multiblock copolymers
with shape-memory capability were presented, whereby the fi rst polymer
component provided the segments forming the hard domains and the second, the segments forming the switching domains [30]. In both multiblock
copolymers, a poly(alkylene adipate) mediator segment was incorporated
to promote their miscibility as the hard segment poly(p-dioxanone) (PPDO)
and the switching segment poly(ε-caprolactone) (PCL) are nonmiscible. All
polymer blends investigated showed excellent shape-memory properties.
The melting point associated with the PCL switching domains Tm, PCL, is
almost independent of the weight ratio of the two blend components. At the
same time, the mechanical properties can be varied systematically by the
blend composition. In this way, a complex synthesis of new materials can
be avoided. This binary blend system providing good biodegradability, a
variability of mechanical properties, and a Tsw around the body temperature
is thus an economically efficient, suitable candidate for diverse biomedical
applications.
1.3.1.2 Covalently Cross-Linked Shape-Memory Polymers
Shape-memory polymer networks providing covalent netpoints can be
obtained by the cross-linking of linear or branched polymers as well as
by (co)polymerization/poly(co)condensation of one or several monomers,
whereby one has to be at least trifunctional. Depending on the synthesis
strategy, cross-links can be created during the synthesis or by postprocessing
methods. Besides cross-linking by radiation (γ-radiation, neutrons, e-beam),
the most common method for chemical cross-linking, after processing, is
the addition of a radical initiator to polymers. An example of this is the
addition of dicumyl peroxide to a semicrystalline polycyclooctene obtained
by ring-opening methathesis polymerization containing unsaturated carbon bonds [31]. Here, the shape-memory effect is triggered by the melting
of crystallites, which can be controlled by the trans-vinylene content. With
increasing cross-linking density, the crystallinity of the material decreases.
A melting temperature of 60°C was determined for pure polycyclooctene
with a 81 wt% trans-vinylene content resulting in a shape recovery of these
materials within 0.7 s at 70°C. The conversion to Ttrans, when temperature is
increased, can be monitored by the addition of a mechanochromic dye based
on oligo(p-phenylene vinylene). Previously formed excimers of the dye are
dissolved at this point and a pronounced change of their adsorption can be
observed [32].
The other synthetic route to obtain polymer networks involves the copolymerization of monofunctional monomers with low molecular weight or
oligomeric bifunctional cross-linkers. In a model system based on a styrene
copolymer cross-linked with divinylbenzene, the influence of the degree of
cross-linking on the thermomechanical properties has been investigated [33].
By increasing the amount of the cross-linker from 0 to 4 wt%, Tg increased 前言/序言
《形状记忆聚合物及其多功能复合材料(导读版)》 形状记忆聚合物(SMPs)作为一类智能材料,因其独特的形状记忆效应而备受瞩目。它们能够在外部刺激(如温度、光、电、磁等)的作用下,经历一个形变过程,并在移除刺激后,根据预设的“记忆”形状恢复原状。这种神奇的响应能力为材料科学、工程学以及诸多应用领域带来了革命性的机遇。 本书(导读版)旨在为读者提供一个全面且易于理解的形状记忆聚合物及其多功能复合材料入门。我们不会深入探讨高深的理论模型或复杂的实验细节,而是聚焦于核心概念、关键原理以及它们在实际应用中的潜力。 第一部分:形状记忆聚合物的核心奥秘 在本部分,我们将揭示形状记忆聚合物为何能够“记住”并“恢复”形状。我们将从以下几个方面入手: 形状记忆效应的起源: 深入浅出地解释驱动形状记忆行为的基本机制。我们将探讨聚合物链的分子结构、交联网络的作用,以及相变(如玻璃化转变、结晶-熔融等)在形状记忆过程中扮演的关键角色。我们将用直观的类比和图示来帮助理解,避免枯燥的化学方程式。 驱动刺激的多样性: 了解不同类型的外部刺激如何触发形状记忆效应。除了最常见的温度响应,我们还将介绍光响应、电响应、磁响应以及化学响应的形状记忆聚合物。我们将讨论每种刺激的优缺点及其适用场景。 形变与恢复的艺术: 阐述如何对形状记忆聚合物进行编程(形变)以及如何启动其恢复过程。我们将解释“永久形变”和“临时形变”的概念,以及如何通过控制加载和卸载条件来获得期望的形状。 形变比与恢复效率: 引入衡量形状记忆聚合物性能的关键指标,如形变比(能够被拉伸或压缩的程度)和恢复效率(恢复到原始形状的程度)。我们将讨论影响这些指标的因素,并提供一些性能优异的材料实例。 第二部分:赋予形状记忆聚合物“多功能”的翅膀 单一的形状记忆功能固然强大,但当它与其他功能相结合时,其应用潜力将呈指数级增长。本部分将重点介绍如何通过复合化来赋予形状记忆聚合物多重功能。 复合材料的基石: 了解如何将形状记忆聚合物与不同的填料或基体材料进行复合。我们将讨论常见的复合策略,例如将导电填料(如碳纳米管、石墨烯)引入到形状记忆聚合物中,以实现电响应的形状记忆效应;或者将生物活性物质与形状记忆聚合物结合,用于可控药物释放。 电磁响应的新维度: 重点介绍如何利用电和磁场来驱动形状记忆聚合物的响应。我们将探讨导电聚合物、磁性纳米粒子等如何与形状记忆聚合物协同作用,实现更精确、更快速的形状变化。 传感与诊断的集成: 探索将传感能力集成到形状记忆聚合物复合材料中的可能性。例如,嵌入压电材料,使其在形变过程中能够产生电信号,从而实现自传感功能;或者集成光学传感器,用于监测环境变化。 生物医学领域的潜力: 审视形状记忆聚合物及其复合材料在生物医学领域的应用前景。从可植入医疗器械、可控药物释放系统,到组织工程支架,我们将介绍其独特的优势和面临的挑战。 结构自修复的曙光: 探讨将形状记忆效应与材料自修复机制相结合的创新思路。想象一下,当材料发生微小损伤时,形状记忆聚合物能够通过局部加热或应力,促使断裂表面愈合,从而延长材料的使用寿命。 第三部分:形状记忆聚合物的应用前沿 在本部分,我们将跳出理论和原理的藩篱,直接展示形状记忆聚合物及其复合材料是如何改变我们生活和工作的方方面面的。 航空航天与汽车工业: 探索其在可展开结构(如太阳能电池板、天线)、可变几何翼型、减震器等方面的应用。 可穿戴设备与机器人: 介绍其在柔性电子器件、仿生机器人、可调节服装等领域的创新实践。 智能家居与建筑: 展望其在自适应窗户、智能隔热材料、可变家具等方面的应用潜力。 医疗健康与制药: 详细介绍其在微创手术器械、药物递送系统、骨科植入物等方面的突破性进展。 其他新兴领域: 探索其在3D打印、智能包装、环境保护等领域的新机遇。 本书(导读版)的特点: 概念优先: 重点在于清晰地阐述核心概念,帮助读者建立扎实的理解基础。 图文并茂: 大量使用图示、示意图和实例,使抽象的科学原理变得直观易懂。 应用导向: 紧密结合实际应用,展示形状记忆聚合物的价值和前景。 语言通俗: 避免使用过于专业化的术语,力求语言流畅、生动,适合不同背景的读者。 循序渐进: 内容组织结构清晰,由浅入深,逐步引导读者掌握知识。 无论您是材料科学领域的初学者,还是希望了解前沿智能材料技术的工程师、研究人员,抑或是对创新材料充满好奇心的普通读者,《形状记忆聚合物及其多功能复合材料(导读版)》都将是您开启这段精彩探索之旅的理想起点。本书将为您打开一扇通往智能材料世界的大门,激发您对未来科技的无限遐想。