内容简介
The present book strives for clarity and transparency. Right from the begin-ning, it requires from the reader a willingness to deal with abstract concepts, as well as a considerable measure of self-initiative. For these e&,rts, the reader will be richly rewarded in his or her mathematical thinking abilities, and will possess the foundation needed for a deeper penetration into mathematics and its applications.
This book is the first volume of a three volume introduction to analysis. It de- veloped from. courses that the authors have taught over the last twenty six years at the Universities of Bochum, Kiel, Zurich, Basel and Kassel. Since we hope that this book will be used also for self-study and supplementary reading, we have included far more material than can be covered in a three semester sequence. This allows us to provide a wide overview of the subject and to present the many beautiful and important applications of the theory. We also demonstrate that mathematics possesses, not only elegance and inner beauty, but also provides efficient methods for the solution of concrete problems.
内页插图
目录
Preface
Chapter Ⅰ Foundations
1 Fundamentals of Logic
2 Sets
Elementary Facts
The Power Set
Complement, Intersection and Union
Products
Families of Sets
3 Functions,
Simple Examples
Composition of Functions
Commutative Diagrams
Injections, Surjections and Bijections
Inverse Functions
Set Valued Functions
4 Relations and Operations
Equivalence Relations
Order Relations
Operations
5 The Natural Numbers
The Peano Axioms
The Arithmetic of Natural Numbers
The Division Algorithm
The Induction Principle
Recursive Definitions
6 Countability
Permutations
Equinumerous Sets
Countable Sets
Infinite Products
7 Groups and Homomorphisms
Groups
Subgroups
Cosets
Homomorphisms
Isomorphisms
8 R.ings, Fields and Polynomials
Rings
The Binomial Theorem
The Multinomial Theorem
Fields
Ordered Fields
Formal Power Series
Polynomials
Polynomial Functions
Division of Polynomiajs
Linear Factors
Polynomials in Several Indeterminates
9 The Rational Numbers
The Integers
The Rational Numbers
Rational Zeros of Polynomials
Square Roots
10 The Real Numbers
Order Completeness
Dedekind's Construction of the Real Numbers
The Natural Order on R
The Extended Number Line
A Characterization of Supremum and Infimum
The Archimedean Property
The Density of the Rational Numbers in R
nth Roots
The Density of the Irrational Numbers in R
Intervals
Chapter Ⅱ Convergence
Chapter Ⅲ Continuous Functions
Chapter Ⅳ Differentiation in One Variable
Chapter Ⅴ Sequences of Functions
Appendix Introduction to Mathematical Logic
Bibliography
Index
前言/序言
Logical thinking, the analysis of complex relationships, the recognition of under- lying simple structures which are common to a multitude of problems - these are the skills which are needed to do mathematics, and their development is the main goal of mathematics education.
Of course, these skills cannot be learned 'in a vacuum'. Only a continuous struggle with concrete problems and a striving for deep understanding leads to success. A good measure of abstraction is needed to allow one to concentrate on the essential, without being distracted by appearances and irrelevancies.
The present book strives for clarity and transparency. Right from the begin-ning, it requires from the reader a willingness to deal with abstract concepts, as well as a considerable measure of self-initiative. For these e&,rts, the reader will be richly rewarded in his or her mathematical thinking abilities, and will possess the foundation needed for a deeper penetration into mathematics and its applications.
This book is the first volume of a three volume introduction to analysis. It de- veloped from. courses that the authors have taught over the last twenty six years at the Universities of Bochum, Kiel, Zurich, Basel and Kassel. Since we hope that this book will be used also for self-study and supplementary reading, we have included far more material than can be covered in a three semester sequence. This allows us to provide a wide overview of the subject and to present the many beautiful and important applications of the theory. We also demonstrate that mathematics possesses, not only elegance and inner beauty, but also provides efficient methods for the solution of concrete problems.
Analysis itself begins in Chapter II. In the first chapter we discuss qLute thor- oughly the construction of number systems and present the fundamentals of linear algebra. This chapter is particularly suited for self-study and provides practice in the logical deduction of theorems from simple hypotheses. Here, the key is to focus on the essential in a given situation, and to avoid making unjustified assumptions.An experienced instructor can easily choose suitable material from this chapter to make up a course, or can use this foundational material as its need arises in the study of later sections.
……
分析(第1卷) [Analysis 1] 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
比如我们10岁以前,阿拉丁神灯这一类儿童书籍能够打动我们,也能够让我们开始学着认识这个世界。然而当我们长大一些之后,能够打动我们或者对我们有巨大帮助的书籍,会变化。所以第一个建议是:根据自己当前的人生阶段、认知水平来思考自己应该看哪一类书,比如说初入职场的人,去学习具体的工作技能(如Excel的使用)会比研读管理学理论要更为有益,因为对于这个阶段的你来说,技能性的东西可以现学现练,很快就能把书里的东西转化为自己能力的一部分。
评分
☆☆☆☆☆
总的来说,它们的证明简洁和逻辑但需要一些耐心跟随。当做出一个论点,作者经常引用前题一个b。c和定理x y。没有显式地声明校长z,他们正在使用,即使它可能有一个名字。因此,作为一个读者,你要么必须愿意遵循面包屑他们提供或确保你明白为什么他们的论证工作。这真的不是一个批评,只是一个观察。因为这个原因虽然,如果你打算买卷的工作,您N必须买卷N - 1。在每一卷,作者承认的序言中,他们的是太多的材料覆盖在一个学期;事实上,至少有足够的材料在每个卷为一个学年工作的价值。
评分
☆☆☆☆☆
开笔此书前,我曾列过一个写作计划。按人名顺序一个接一个去罗列—他们都是些浪荡江湖,和我的人生轨迹曾交叉重叠的老友们。 当时,我坐在一辆咣当咣当的绿皮火车里,天色微亮,周遭是不同省份的呼噜声。我找了个本子,塞着耳机一边听歌一边写……活着的、死了的、不知不觉写满了七八页纸。我吓了一跳,怎么这么多的素材?不过十年,故事却多得堆积如山,这哪里是一本书能够写的完的。 头有点儿大,不知该如何取舍,于是索性随手圈了几个老友的人名。反正写谁都是写,就像一大串美味的葡萄,随手摘下的,都是一粒粒饱满的甜。随手圈下的名单,是为此书篇章构成之由来。圈完后一抬头,车窗外没有起伏,亦没有乔木,已是一马平川的华北平原。 书的创作过程中,我慢慢梳理出了一些东西,隐约发现自己将推展开的世界,于已经习惯了单一幸福感获取途径的人们而言,那是另一种幸福感。 那是一些值得我们去认可、寻觅的幸福感。他们或许是陌生的,但发着光。在我的认知中,一个成熟健全的当代文明社会,理应尊重多元的个体价值观,理应尊重个体幸福感获得方式。这种尊重,应该建立在了解的基础之上,鉴于国人文化传统里对陌生事物的天然抵触因子,“如何去了解”这几个字愈发重要。 那么,亲爱的们,我该如何去让你了解那些多元而又陌生的幸福感呢? 写书时,恰逢山东大学抬爱,让我有缘受聘于山东大学儒学高等研究院,于是趁机做了一场名为《亚文化下成长方式的田野调查》的报告讲座。 那天会场塞满了人,场面出乎意料的火爆,来的大都是85 后和90后。我讲的就是这份名单:大军、路平、月月、白玛央宗……我和他们的共同生活就是一场田野调查。我没用太学术的语言词汇去贯穿讲座,但讲了许多细节的故事, 那天的叙述方式,是为本书行文的基调。 卡尔维诺说:“要把地面上的人看清楚,就要和地面保持距离”。这句话给我带来一个意像:一个穿西服打领带的人,手足并用爬在树上,和大部分同类保持着恰当的距离。他晃荡着腿,骑在自我设定的叛逆里,心无挂碍,乐在其中。偶尔低头看看周遭过客,偶尔抬头,漫天星斗。 我期待出到第十本书的时候,也能爬上这样一棵树。 当下是我第一本书,芹献诸君后,若价值观和您不重叠、行文有不得人心处,请姑念初犯…… 我下次不会改的。 等我爬上树了再说。 我不敢说这本书写得有多好多好,也懒得妄自菲薄,只知过程中三易其稿,惹得责编戴克莎小姐几度差点儿忿极而泣。如此这般折腾,仅为本色二字:讲故事人的本色,故事中人们的本色。 或许,打磨出本色的过程,也是爬树的过程吧。 文至笔端心意浅,话到唇畔易虚言,且洒莲实二三子,自有方家识真颜。 这本书完稿后,我背起吉他,从北到南,用一个月的时间挨个去探望了书中的老友们,除了那个不用手机的女孩,其他的人我几乎见了一个遍。
评分
☆☆☆☆☆
目次:全书其有四部分,新增加了5章,总共17章。(一)集合论、实数和微积分:集合论;实数体系和微积分。(二)测度、积分和微分:实线上的勒贝格理论;实线上的勒贝格积分;测度和乘积测度的扩展;概率论基础;微分和绝对连续;单测度和复测度。(三)拓扑、度量和正规空间:拓扑、度量和正规空间基本理论;可分离性和紧性;完全空间和紧空间;希尔伯特空间和经典巴拿赫空间;正规空间和局部凸空间。(四)调和分析、动力系统和hausdorff侧都:调和分析基础;可测动力系统;hausdorff测度和分形。
评分
☆☆☆☆☆
Gooooooooooooooood
评分
☆☆☆☆☆
评分
☆☆☆☆☆
二、书有很多分类,不要局限于某一类,尤其是不要耽溺于通俗小说
评分
☆☆☆☆☆
注意Hilbert space一定是Banach space,而Hilbert space 和 Banach space都是特殊的topological vector space。的确,所以老一点的书都直接定义Hilbert space是l^2,因为那时都假设有一个可数的orthonormal basis。看谢惠民吧,那个什么多维骑还是放一边。不过答案只有提示,很多答案可以在薛春华中找我看一本数学书大概三百页厚,半个月看不完啊,一天也就看两三页,看得时间也不多,就两三个钟,还消化不良,有时候想赶快看越快看越学得少与不懂。你们都是怎么看书的,来跟大家分享下吧!
评分
☆☆☆☆☆
目次:全书其有四部分,新增加了5章,总共17章。(一)集合论、实数和微积分:集合论;实数体系和微积分。(二)测度、积分和微分:实线上的勒贝格理论;实线上的勒贝格积分;测度和乘积测度的扩展;概率论基础;微分和绝对连续;单测度和复测度。(三)拓扑、度量和正规空间:拓扑、度量和正规空间基本理论;可分离性和紧性;完全空间和紧空间;希尔伯特空间和经典巴拿赫空间;正规空间和局部凸空间。(四)调和分析、动力系统和hausdorff侧都:调和分析基础;可测动力系统;hausdorff测度和分形。