發表於2025-05-12
第1章 度量空間
1.1 度量空間
1.2 度量拓撲
1.3 連續算子
1.4 完備性與不動點定理
習題
第2章 賦範綫性空間
2.1 賦範空間的基本概念
2.2 範數的等價性與有限維賦範空間
2.3 Schauder基與可分性
2.4 綫性連續泛函與Hahn—Banach定理
2.5 嚴格凸空間
習題二
第3章 有界綫性算子
3.1 有界綫性算子
3.2 一緻有界原理
3.3 開映射定理與逆算子定理
3.4 閉綫性算子與閉圖像定理
習題三
第4章 共軛空間
4.1 共軛空間
4.2 自反Banach空間
4.3 弱收斂
4.4 共軛算子
習題四
第5章 Hilbert空間
5.1 內積空間
5.2 投影定理
5.3 Hilbert空間的正交集
5.4 Hilbert空間的共軛空間
習題五
第6章 綫性算子的譜理論
6.1 有界綫性算子的譜理論
6.2 緊綫算子的譜性質
6.3 Hilbert空間上綫性算子的譜理論
習題六
第7章 凸性與光滑性
7.1 嚴格凸與光滑
7.2 一緻凸與一緻光滑
7.3 凸性與再賦範問題
習題七
部分習題解答
參考文獻
索引
泛函分析講義 下載 mobi pdf epub txt 電子書 格式 2025
泛函分析講義 下載 mobi epub pdf 電子書5,域的擴張、代數擴張、超越擴張、分裂域、Kronecker定理、可分多項式、有限域擴張、有限域的子域、有限域的自同構、Mobius反演公式、分圓多項式。
評分曆史摺疊編輯本段
評分數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語 : math),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義
評分好評。。zz
評分4,作為有嚮體積的行列式、行列式的基本性質、子式、餘子式、行列式的展開。
評分11,綫性映射、綫性映射的矩陣錶示、像與核、綫性算子、綫性算子代數、極小多項式、矩陣的相似、綫性算子的行列式與跡。
評分5,內積空間上的綫性算子、化二次型為主軸形式、把兩個二次型同時化為規範型、保距算子的規範形式、極分解、奇異值分解、Schur定理、Witt擴張定理、復結構、復化綫性空間、實化綫性空間、實化綫性算子、復化算子、最小二乘法、球麵多項式、加權正交。
評分 評分代數學-2
泛函分析講義 mobi epub pdf txt 電子書 格式下載 2025