第1章 度量空間
1.1 度量空間
1.2 度量拓撲
1.3 連續算子
1.4 完備性與不動點定理
習題
第2章 賦範綫性空間
2.1 賦範空間的基本概念
2.2 範數的等價性與有限維賦範空間
2.3 Schauder基與可分性
2.4 綫性連續泛函與Hahn—Banach定理
2.5 嚴格凸空間
習題二
第3章 有界綫性算子
3.1 有界綫性算子
3.2 一緻有界原理
3.3 開映射定理與逆算子定理
3.4 閉綫性算子與閉圖像定理
習題三
第4章 共軛空間
4.1 共軛空間
4.2 自反Banach空間
4.3 弱收斂
4.4 共軛算子
習題四
第5章 Hilbert空間
5.1 內積空間
5.2 投影定理
5.3 Hilbert空間的正交集
5.4 Hilbert空間的共軛空間
習題五
第6章 綫性算子的譜理論
6.1 有界綫性算子的譜理論
6.2 緊綫算子的譜性質
6.3 Hilbert空間上綫性算子的譜理論
習題六
第7章 凸性與光滑性
7.1 嚴格凸與光滑
7.2 一緻凸與一緻光滑
7.3 凸性與再賦範問題
習題七
部分習題解答
參考文獻
索引
不錯,不錯,不錯,不錯,不錯,
評分曆史摺疊編輯本段
評分數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語 : math),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義
評分更進一步則需要寫作或其他可記錄數字的係統,如符木或於印加帝國內用來儲存數據的奇普。曆史上曾有過許多且分歧的記數係統。
評分2,良序集、Zorn引理、選擇公理、態射、自然變換、環的理想、商環、同態基本定理、環的同構定理、理想的運算、局部化、素理想。
評分5,非退化行列式的判定、伴隨矩陣、Cramer法則、加邊子式法、作為多重綫性規範反對稱函數的行列式。
評分不錯,不錯,不錯,不錯,不錯,
評分數學的起源
評分9,對稱多項式環、多稱多項式的基本定理、待定係數法、等冪和、Newton公式、多項式的判彆式、結式、復數域的代數封閉性、代數基本定理、Strum定理、多項式根的近似算法、整係數多項式的有理根。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有