8,第一型曲面与曲线积分、第二型曲面与曲线积分、Green公式、Gauss-Ostrogradsky公式、一般的Stokes公式、Riemann流形、Riemann流形上的Stokes公式、李群上的积分。
评分4,流形的定义、带边与无边流形、光滑流形、光滑映射、可定向与不可定向流形、曲面边界定向的协调性、第二可数公理、单位分解。
评分早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
评分微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
评分1,R^n中的Jordan测度、多重Riemann积分、Riemann可积性、Lebesgue定理、上积分与下积分、Darboux可积性定理、容许集、集合上的Riemann积分、多重Riemann积分的可加性、多重Riemann积分的估计。
评分 评分牛顿
评分原装正版,值得信赖,建议购买哦
评分牛顿
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有