內容簡介
Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ...) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ...). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals.
It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds.
The present work is the sixth edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr~University Bochum and the University of Leipzig. The main new feature of the present edition is a systematic presentation of the spectrum of the Laplace operator and its relation with the geometry of the underlying Riemannian marufold. Naturally, I have also included several smaller additions and minor corrections (for which I am grateful to several readers). Moreover, the organization of the chapters has been systematically rearranged.
內頁插圖
目錄
1 Riemannian Manifolds
1.1 Manifolds and Differentiable Manifolds
1.2 Tangent Spaces
1.3 Submanifolds
1.4 Riemannian Metrics
1.5 Existence of Geodesics on Compact Manifolds
1.6 The Heat Flow and the Existence of Geodesics
1.7 Existence of Geodesics on Complete Manifolds
Exercises for Chapter 1
2 Lie Groups and Vector Bundles
2.1 Vector Bundles
2.2 Integral Curves of Vector Fields.Lie Algebras
2.3 Lie Groups
2.4 Spin Structures
Exercises for Chapter 2
3 The Laplace Operator and Harmonic Differential Forms
3.1 The Laplace Operator on Functions
3.2 The Spectrum of the Laplace Operator
3.3 The Laplace Operator on Forms
3.4 Representing Cohomology Classes by Harmonic Forms
3.5 Generalizations
3.6 The Heat Flow and Harmonic Forms
Exercises for Chapter 3
4 Connections and Curvature
4.1 Connections in Vector Bundles
4.2 Metric Connections.The Yang—Mills Functional
4.3 The Levi—Civita Connection
4.4 Connections for Spin Structures and the Dirac Operator
4.5 The Bochner Method
4.6 Eigenvalue Estimates by the Method of Li—Yau
4.7 The Geometry of Submanifolds
4.8 Minimal Submanifolds
Exercises for Chapter 4
5 Geodesics and Jacobi Fields
5.1 First and second Variation of Arc Length and Energy
5.2 Jacobi Fields
5.3 Conjugate Points and Distance Minimizing Geodesics
5.4 Riemannian Manifolds of Constant Curvature
5.5 The Rauch Comparison Theorems and Other Jacobi Field Estimates
5.6 Geometric Applications of Jacobi Field Estimates
5.7 Approximate Fundamental Solutions and Representation Formulas
5.8 The Geometry of Manifolds of Nonpositive Sectional Curvature
Exercises for Chapter 5
A Short Survey on Curvature and Topology
6 Symmetric Spaces and Kahler Manifolds
6.1 Complex Projective Space
6.2 Kahler Manifolds
6.3 The Geometry of Symmetric Spaces
6.4 Some Results about the Structure of Symmetric Spaces
6.5 The Space Sl(n,IR)/SO(n,IR)
6.6 Symmetric Spaces of Noncompact Type
Exercises for Chapter 6
7 Morse Theory and Floer Homology
7.1 Preliminaries: Aims of Morse Theory
7.2 The Palais—Smale Condition,Existence of Saddle Points
7.3 Local Analysis
7.4 Limits of Trajectories of the Gradient Flow
7.5 Floer Condition,Transversality and Z2—Cohomology
7.6 Orientations and Z—homology
7.7 Homotopies
7.8 Graph flows
7.9 Orientations
7.10 The Morse Inequalities
7.11 The Palais—Smale Condition and the Existence of Closed Geodesics
Exercises for Chapter 7
8 Harmonic Maps between Riemannian Manifolds
8.1 Definitions
8.2 Formulas for Harmonic Maps.The Bochner Technique
8.3 The Energy Integral and Weakly Harmonic Maps
8.4 Higher Regularity
8.5 Existence of Harmonic Maps for Nonpositive Curvature
8.6 Regularity of Harmonic Maps for Nonpositive Curvature
8.7 Harmonic Map Uniqueness and Applications
Exercises for Chapter 8
9 Harmonic Maps from Riemann Surfaces
9.1 Two—dimensional Harmonic Mappings
9.2 The Existence of Harmonic Maps in Two Dimensions
9.3 Regularity Results
Exercises for Chapter 9
10 Variational Problems from Quantum Field Theory
10.1 The Ginzburg—Landau Functional
10.2 The Seiberg—Witten Functional
10.3 Dirac—harmonic Maps
Exercises for Chapter 10
A Linear Elliptic Partial Differential Equations
A.1 Sobolev Spaces
A.2 Linear Elliptic Equations
A.3 Linear Parabolic Equations
B Fundamental Groups and Covering Spaces
Bibliography
Index
前言/序言
好的,這是一本關於黎曼幾何和幾何分析的權威教材的詳細內容介紹,著重於其核心概念、方法論和在現代數學中的地位,但不包含您提到的特定版本(第六版)的任何具體內容或章節細節。 --- 現代微分幾何與分析的基石:一部跨越理論與應用的深度探索 本書旨在為高等數學、理論物理以及相關工程領域的研究者和高級學生提供一個全麵、嚴謹且富有洞察力的知識體係。它不是一本簡單的入門讀物,而是一部深入剖析黎曼幾何核心原理並將其與現代幾何分析工具相結閤的權威參考書。全書構建瞭一個從基礎拓撲和微分流形理論齣發,逐步攀升至抽象黎曼幾何,最終觸及前沿幾何分析問題的理論框架。 第一部分:微分流形的基礎架構 本書的起點建立在堅實的拓撲和光滑流形理論之上。我們首先細緻地迴顧瞭必要的拓撲學預備知識,特彆是緊緻性、連通性和可微性空間的概念。隨後,重點轉嚮微分流形的構造。這包括對坐標圖集(atlas)、光滑結構以及切空間的嚴格定義。切空間被視為理解局部綫性化結構的關鍵,它不僅是後續所有幾何構造的根基,也為張量場、微分形式和嚮量場奠定瞭基礎。 在流形上進行分析的前提是定義光滑函數和微分形式。本書詳盡闡述瞭這些概念,包括楔積(wedge product)和外導數(exterior derivative)。德拉姆上同調(de Rham cohomology)作為衡量流形拓撲結構的重要工具,得到瞭深入的討論。我們通過鏈復形(chain complex)的視角,清晰地展示瞭如何將拓撲信息編碼進光滑結構之中,這為理解拓撲不變量與幾何度量之間的深刻聯係埋下瞭伏筆。 第二部分:黎曼幾何的核心結構:度量與聯絡 本書的核心在於引入黎曼幾何。這首先要求在流形上安裝一個黎曼度量 $g$。度量的引入,使得我們能夠在切空間上定義內積,從而談論長度、角度和正交性。這個結構將光滑流形提升為一個度量空間,並賦予瞭空間麯率的概念。 圍繞度量,聯絡(Connection)的構造是必不可少的。本書深入探討瞭仿射聯絡的性質,特彆是它如何定義切嚮量的平行移動(parallel transport)。隨後的重點自然落在瞭黎曼聯絡(Levi-Civita 聯絡)的唯一性和構造上,它完全由黎曼度量決定。通過黎曼聯絡,我們得以定義協變導數(covariant derivative),這是在麯麵上進行微分運算的唯一一緻方式。 麯率的幾何詮釋: 麯率是黎曼幾何的靈魂。本書係統地推導並分析瞭幾個關鍵的麯率概念: 1. 黎曼麯率張量(Riemann Curvature Tensor): 它是衡量切空間中平行移動路徑依賴性的量度,其定義與李括號和撓率的消失緊密相關。 2. 裏奇張量(Ricci Tensor)和裏奇標量(Ricci Scalar): 這些是黎曼麯率張量的縮並形式,直接關聯到體積的局部變化率,是連接幾何與物理(如愛因斯坦場方程)的橋梁。 3. 截麵麯率(Sectional Curvature): 通過考察流形上任意二維子空間的麯率,提供瞭對局部幾何形態最直觀的理解。 測地綫(Geodesics)作為黎曼流形上“最直”的麯綫,其定義基於變分原理或黎曼聯絡的零協變導數。測地綫的存在性和唯一性定理,構成瞭黎曼幾何中關於距離和全局結構的分析基礎。 第三部分:從黎曼流形到幾何分析 在建立瞭堅實的黎曼幾何框架後,本書轉嚮瞭如何利用這些幾何結構進行現代分析。這要求我們將微分算子(如拉普拉斯-德拉姆算子 $Delta$)置於彎麯空間中進行研究。 幾何分析的核心工具: 1. 黎曼流形上的微分算子: 我們詳細分析瞭形如 $Delta$ 的橢圓型算子在彎麯空間上的行為。這不僅涉及對經典拉普拉斯算子在更高維度上的推廣,還包括對上同調類彆的關聯。 2. 譜理論與特徵值問題: 空間(流形)的幾何結構與其譜性質(如特徵值)之間存在深刻的聯係。本書探討瞭譜幾何的基本問題,例如“譜能否決定幾何?”(What does the spectrum tell about the shape?)。 3. 變分方法與勢能理論: 利用能量泛函的最小化來尋找重要的幾何對象,例如極小麯麵(Minimal Surfaces)理論在黎曼流形上的推廣,或穩定嚮量叢的分析。 特殊的幾何結構與高級主題: 為瞭展示黎曼幾何的廣闊應用,本書深入探討瞭幾種具有特殊性質的流形結構,這些結構在理論物理和拓撲學中占據重要地位: 對稱性與常麯率空間: 討論瞭如球麵、雙麯空間等具有極大對稱性的空間,及其在李群理論中的體現。 提莫裏(Teichmüller)空間與模空間: 考察瞭度量和結構如何隨參數變化而變化的空間,這是幾何拓撲學的前沿領域。 卡拉比-丘流形(Calabi-Yau Manifolds)或相關Kähler幾何結構: 簡要介紹瞭在復幾何和弦理論中至關重要的結構,展示瞭黎曼幾何與復分析的交匯點。 總結: 本書通過嚴謹的數學語言和豐富的幾何直覺,為讀者構建瞭一個完整的從局部到全局的理解體係。它強調瞭度量、聯絡和麯率之間的內在統一性,並將這些概念轉化為可供分析研究的強大工具。它不僅是學習經典黎曼幾何的必備教材,更是進入現代幾何分析、拓撲學和理論物理交叉領域的研究指南。其目標是培養讀者運用幾何思維解決復雜分析問題的能力。