黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition]

黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition] 下載 mobi epub pdf 電子書 2025


簡體網頁||繁體網頁
[德] 約斯特(Jost J.) 著

下載链接在页面底部


下載連結1
下載連結2
下載連結3
    

想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-02-18


圖書介紹


齣版社: 世界圖書齣版公司
ISBN:9787510084447
版次:6
商品編碼:11647751
包裝:平裝
外文名稱:Riemannian Geometry and Geometric Analysis Sixth Edition
開本:24開
齣版時間:2015-01-01
用紙:膠版紙
頁數:611
正文語種:英文


類似圖書 點擊查看全場最低價

相關圖書





圖書描述

內容簡介

  Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ...) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ...). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals.
  It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds.
  The present work is the sixth edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr~University Bochum and the University of Leipzig. The main new feature of the present edition is a systematic presentation of the spectrum of the Laplace operator and its relation with the geometry of the underlying Riemannian marufold. Naturally, I have also included several smaller additions and minor corrections (for which I am grateful to several readers). Moreover, the organization of the chapters has been systematically rearranged.

內頁插圖

目錄

1 Riemannian Manifolds
1.1 Manifolds and Differentiable Manifolds
1.2 Tangent Spaces
1.3 Submanifolds
1.4 Riemannian Metrics
1.5 Existence of Geodesics on Compact Manifolds
1.6 The Heat Flow and the Existence of Geodesics
1.7 Existence of Geodesics on Complete Manifolds
Exercises for Chapter 1

2 Lie Groups and Vector Bundles
2.1 Vector Bundles
2.2 Integral Curves of Vector Fields.Lie Algebras
2.3 Lie Groups
2.4 Spin Structures
Exercises for Chapter 2

3 The Laplace Operator and Harmonic Differential Forms
3.1 The Laplace Operator on Functions
3.2 The Spectrum of the Laplace Operator
3.3 The Laplace Operator on Forms
3.4 Representing Cohomology Classes by Harmonic Forms
3.5 Generalizations
3.6 The Heat Flow and Harmonic Forms
Exercises for Chapter 3

4 Connections and Curvature
4.1 Connections in Vector Bundles
4.2 Metric Connections.The Yang—Mills Functional
4.3 The Levi—Civita Connection
4.4 Connections for Spin Structures and the Dirac Operator
4.5 The Bochner Method
4.6 Eigenvalue Estimates by the Method of Li—Yau
4.7 The Geometry of Submanifolds
4.8 Minimal Submanifolds
Exercises for Chapter 4

5 Geodesics and Jacobi Fields
5.1 First and second Variation of Arc Length and Energy
5.2 Jacobi Fields
5.3 Conjugate Points and Distance Minimizing Geodesics
5.4 Riemannian Manifolds of Constant Curvature
5.5 The Rauch Comparison Theorems and Other Jacobi Field Estimates
5.6 Geometric Applications of Jacobi Field Estimates
5.7 Approximate Fundamental Solutions and Representation Formulas
5.8 The Geometry of Manifolds of Nonpositive Sectional Curvature
Exercises for Chapter 5
A Short Survey on Curvature and Topology

6 Symmetric Spaces and Kahler Manifolds
6.1 Complex Projective Space
6.2 Kahler Manifolds
6.3 The Geometry of Symmetric Spaces
6.4 Some Results about the Structure of Symmetric Spaces
6.5 The Space Sl(n,IR)/SO(n,IR)
6.6 Symmetric Spaces of Noncompact Type
Exercises for Chapter 6

7 Morse Theory and Floer Homology
7.1 Preliminaries: Aims of Morse Theory
7.2 The Palais—Smale Condition,Existence of Saddle Points
7.3 Local Analysis
7.4 Limits of Trajectories of the Gradient Flow
7.5 Floer Condition,Transversality and Z2—Cohomology
7.6 Orientations and Z—homology
7.7 Homotopies
7.8 Graph flows
7.9 Orientations
7.10 The Morse Inequalities
7.11 The Palais—Smale Condition and the Existence of Closed Geodesics
Exercises for Chapter 7

8 Harmonic Maps between Riemannian Manifolds
8.1 Definitions
8.2 Formulas for Harmonic Maps.The Bochner Technique
8.3 The Energy Integral and Weakly Harmonic Maps
8.4 Higher Regularity
8.5 Existence of Harmonic Maps for Nonpositive Curvature
8.6 Regularity of Harmonic Maps for Nonpositive Curvature
8.7 Harmonic Map Uniqueness and Applications
Exercises for Chapter 8

9 Harmonic Maps from Riemann Surfaces
9.1 Two—dimensional Harmonic Mappings
9.2 The Existence of Harmonic Maps in Two Dimensions
9.3 Regularity Results
Exercises for Chapter 9

10 Variational Problems from Quantum Field Theory
10.1 The Ginzburg—Landau Functional
10.2 The Seiberg—Witten Functional
10.3 Dirac—harmonic Maps
Exercises for Chapter 10

A Linear Elliptic Partial Differential Equations
A.1 Sobolev Spaces
A.2 Linear Elliptic Equations
A.3 Linear Parabolic Equations
B Fundamental Groups and Covering Spaces
Bibliography
Index

前言/序言



黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition] 下載 mobi epub pdf txt 電子書 格式

黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2025

黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition] 下載 mobi pdf epub txt 電子書 格式 2025

黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition] 下載 mobi epub pdf 電子書
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

書很好,印刷質量很好,特彆清晰

評分

二、書有很多分類,不要局限於某一類,尤其是不要耽溺於通俗小說

評分

黎曼流形上的幾何學。德國數學傢G.F.B.黎曼19世紀中期提齣的幾何學理論。1854年黎曼在格丁根大學發錶的題為《論作為幾何學基礎的假設》的就職演說,通常被認為是黎曼幾何學的源頭。在這篇演說中,黎曼將麯麵本身看成一個獨立的幾何實體,而不是把它僅僅看作歐幾裏得空間中的一個幾何實體。他首先發展瞭空間的概念,提齣瞭幾何學研究的對象應是一種多重廣義量 ,空間中的點可用n個實數(x1,……,xn)作為坐標來描述。這是現代n維微分流形的原始形式,為用抽象空間描述自然現象奠定瞭基礎。這種空間上的幾何學應基於無限鄰近兩點(x1,x2,……xn)與(x1+dx1,……xn+dxn)之間的距離,用微分弧長度平方所確定的正定二次型理解度量。亦即 (gij)是由函數構成的正定對稱矩陣。這便是黎曼度量。賦予黎曼度量的微分流形,就是黎曼流形。

評分

很不錯的一本書

評分

看上去還不錯,好書好好研究研究,囤起來,好好學習,天天嚮上

評分

好評。。。。。

評分

對非歐幾裏得幾何做瞭很深入的研究。

評分

評分

一、不同人生階段、不同認知水平對應的“有效讀書”標準不一樣

類似圖書 點擊查看全場最低價

黎曼幾何和幾何分析(第6版) [Riemannian Geometry and Geometric Analysis Sixth Edition] mobi epub pdf txt 電子書 格式下載 2025


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 book.cndgn.com All Rights Reserved. 新城書站 版权所有