YL13112 9787121333569 9787115472618
1章 导论
1.1 引导性示例
1.1.1 计算机网络诊断
1.1.2 神经影像分析
1.1.3 压缩感知
1.2 稀疏复原简介
1.3 统计学习与压缩感知
1.4 总结与参考书目
2章 稀疏复原:问题描述
2.1 不含噪稀疏复原
2.2 近似
2.3 凸性: 简要回顾
2.4 问题(P0)的松弛
2.5 lq-正则函数对解的稀疏性的影响
2.6 l1范数小化与线性规划的等价性
2.7 含噪稀疏复原
2.8 稀疏复原问题的统计学视角
2.9 扩展LASSO:其他损失函数与正则函数
2.10 总结与参考书目
3章 理论结果(确定性部分)
3.1 采样定理
3.2 令人惊讶的实验结果
3.3 从不完全频率信息中进行信号复原
3.4 互相关
3.5 Spark与问题(P0)解的性
3.6 零空间性质与问题(P1)解的性
3.7 有限等距性质
3.8 坏情况下精确复原问题的平方根瓶颈
3.9 基于RIP的精确重构
3.10 总结与参考书目4章理论结果(概率部分)
4.1 RIP何时成立?
4.2 Johnson-Lindenstrauss引理与亚高斯随机矩阵的RIP
4.2.1 Johnson-Lindenstrauss集中不等式的证明
4.2.2 具有亚高斯随机元素的矩阵的RIP
4.3 满足RIP的随机矩阵
4.3.1 特征值与RIP
4.3.2 随机向量,等距随机向量
4.4 具有独立有界行的矩阵与具有傅里叶变换随机行的矩阵的RIP
4.4.1 URI的证明
4.4.2 一致大数定律的尾界
4.5 总结与参考书目
5章 稀疏复原问题的算法
5.1 一元阈值是正交设计的优方法
5.1.1 l0范数小化
5.1.2 l1范数小化
5.2 求解l0范数小化的算法
5.2.1 贪婪方法综述
5.3 用于l1范数小化的算法
5.3.1 用于求解LASSO的小角回归方法
5.3.2 坐标下降法
5.3.3 近端方法
5.4 总结与参考书目
6章 扩展LASSO:结构稀疏性
6.1 弹性网
6.1.1 实际中的弹性网:神经成像应用
6.2 融合LASSO
6.3 分组LASSO:l1/l2罚函数
6.4 同步LASSO:l1/l∞罚函数
6.5 一般化
6.5.1 块l1/lq范数及其扩展
6.5.2 重叠分组
6.6 应用
6.6.1 时间因果关系建模
6.6.2 广义加性模型
6.6.3 多核学习
6.6.4 多任务学习
6.7 总结与参考书目
7章 扩展LASSO:其他损失函数
7.1 含噪观测情况下的稀疏复原
7.2 指数族、 GLM与Bregman散度
7.2.1 指数族
7.2.2 广义线性模型
7.2.3 Bregman散度
7.3 具有GLM回归的稀疏复原
7.4 总结与参考书目
8章 稀疏图模型
8.1 背景
8.2 马尔可夫网络
8.2.1 马尔可夫性质:更为仔细的观察
8.2.2 高斯MRF
8.3 马尔可夫网络中的学习与推断
8.3.1 学习
8.3.2 推断
8.3.3 例子:神经影像应用
8.4 学习稀疏高斯MRF
8.4.1 稀疏逆协方差选择问题
8.4.2 优化方法
8.4.3 选择正则化参数
8.5 总结与参考书目
9章 稀疏矩阵分解:字典学习与扩展
9.1 字典学习
9.1.1 问题描述
9.1.2 字典学习算法
9.2 稀疏PCA
9.2.1 背景
9.2.2 稀疏PCA:合成视角
9.2.3 稀疏PCA:分析视角
9.3 用于盲源分离的稀疏NMF
9.4 总结与参考书目
后记
附录A 数学背景
参考文献
评分
评分
评分
评分
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有