内容简介
华南理工大学高分子物理教研组的六位老师,《高分子物理(修订版)》(复旦大学出版社)的内容为基础,参考国外有关教科书,编写了这本英文版的《高分子物理导论》,供本科生双语教学使用。
英语《高分子物理》教科书与汉语的《高分子物理》教科书相对应。
目录
Chapter 1 STRUCTURE OF POLYMER CHAIN
1.1 Introduction
1.1.1 Introduction to Polymer Science
1.1.2 From Small Molecules to Big Molecules
1.1.3 Future Topics for Polymer Science
1.1.4 Maior Characteristics of Polymer Structure
1.1.5 Contents of Polymer Structure
1.2 Short—range Structure of Polymer Chain
1.2.1 The Chemical Composition of Repeating Units
1.2.2 Bonding Methods of Monomers
1.2.3 Branch and Cross.1iking of Polymer Chain
1.2.4 Sequential Structure of Copolymer
1.2.5 Configuration of Polymer Chain
1.3 Long—range Structure of Polymer Chain
1.3.1 Size and Shape of Polymer Chain
1.3.2 Internal Rotation and Conformation of Polymer Chain
1.3.3 Flexibility of Polymer Chain
1.3.4 Factors of Influence on Polymer Chain Flexibility
1.4 Conformation Statistics of Polymer Chain
1.4.1 Geometry Calculation of Average Square End—to—end Distance
1.4.2 Statistical Calculation of Average Square End—to—end Distance
1.4.3 Characteristics of Polymer Chain Flexibility
1.4.4 Radius of Gyration of Polymer Chain
1.4.5 Wormlike Chain
Chapter 2 CONDENSED STATE STRUCTURE OF POLYMERS
2.1 Van Der Waals Force and Hydrogen Bonding
2.1.1 Primary Bonds
2.1.2 Seconary—bond Forces
2.1.3 Intermolecular Forces and Physical Properties
2.2 Form and Structure of Crystalline Polymers
2.2.I Morphology of Crystalline Polymers
2.2.2 Conformation and Unit Cell of Crystalline Polymers
2.3 Structural Models of Polymers
2.3.1 Structural Models 0f Crystalline Polymers ?
2.3.2 Structural Model of Amorphous Polymers
2.4 Crystalline Processes of Crystalline Polymers
2.4.1 Structure and Abilitv 0f P01ymer:
2.4.2 Crystallization Process of Polymers
2.4.3 The Rate of Crystallization and Its Measurement Methods
2.4.4 The Avrami Equation
2.4.5 The Degree of Crystallinity
2.4.6 Experimental Determination of Crystallinit
2.5 Crystallization Thermodvnamics of Polymers
2.5.1 Melting Phenomena and the Melting Temperature
2.5.2 Theory of Melting Point Depression
2.5.3 Example Calculation of Melting Point Depression
2.5.4 Experimental T11ermodvllamic Parameters
2.5.5 Entropy of Melting
2.5.6 The Hoffman—Weeks Equilibrium Melting Temperature
2.5.7 Effect of Chemical Structure On the Melting Temperature
2.6 Oriented Structure of Polymers
2.6.1 The Production of Orientation in Syl~thetic Polymers
2.6.2 Deliberate Orien ration by Processing in the Solid State
2.6.3 Deliberate Orientation by Processing in the Fluid State
2.6.4 Cold Drawing and the Natural Draw Ratio
2.6.5 Oriented Polymers—models and Properties
2.6.6 Highly Oriented Polymers and Uhimate Moduli
2.7 Liquid—crystal Polymers
2.7.1 Introduction
2.7.2 Types of Mesophases for Small Molecules
2.7.3 Types of Liquid-crystal Polymers
2.7.4 The Processing of Liquid—crystal Polymers
2.7.5 The Properties and Applications of Liquid—crystal Polymers
2.8 Structure and Properties of Blending Polymers
2.8.1 Conditions for Polymer polymer Miscibility
2.8.2 Experimental Detection of Miscibilitv
2.8.3 C0mpatihilisation and Examples of Polymer Blends
2.8.4 Morphology
2.8.5 Properties and Applications
Chapter 3 PROPERTIES OF POLYMER SOLUTIONS
3.1 Dissolution of Polymers
3.1.1 Dissolution Process
3.1.2 Cohesive Energy Density and Thermodynamics for Polymer Dissolution
3.2 Thermodynamics of Polymer Solutions
3.2.1 The Ideal Solution
3.2.2 Statistical Thermodynamics of Mixing
3.2.3 Dilute Solutions
3.2.4 Values for the Flory-Huggins Parametery
3.2.5 A Worked Example for the Free Energy of Mixing
3.3 Semidilute Polymer Solutions
3.3.1 The Dilute to Semidilute Transition
3.3.2 Semidilute Regime Scaling Laws
3.3.3 The Correlation Length, in the Semidilute Solution
3.4 Concentrated Polymer Solutions
3.4.1 Plasticization of Polymers
3.4.2 Spinning Solutions
3.4.3 Gels
3.5 Polyelectrolyte Solutions
3.6 Miscibility of Polymer Blends
3.6.1 Phase Diagrams
3.6.2 Thermodynamics of Phase Separation
3.6.3 An Example Calculation: Molecular Weight Miscibility Limit
3.7 Hydrodynamics Properties of Polymer Solutions
3.7.1 The Diffusion of Polymer in Solutions
3.7.2 Viscose Flow of Polymer inSolutions
Chapter 4 MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION OF POLYMERS
4.1 Polymer Size and Shape
4.2 Molecular Weight Averages
4.3 Determination Methods of Molecular Weight
4.3.1 End-group Analyses
4.3.2 Osmotic Pressure
4.3.3 Light scattering
4.3.4 Flight Time
4.3.5 Viscometry
4.4 Determination Methods of Molecular Weight Distribution
4.4.1 Phase Separation and Fractionation
4.4.2 Gel Permeation Chromatography
Chapter 5 MOLECULAR CHAIN MOTION
5.1 Introduction to Molecular Chain Motion
5.1.1 Simple Mechanical Relationships and Their Concepts
5.1.2 Polymer Relaxation and Transition
5.1.3 Polymer Molecular Chain Relaxation and Transition
5.2 The Glass Transition
5.2.1 Introduction
5.2.2 Methods of Measuring Transitions in Polymers
5.2.3 Theories of the Glass Transition
5.2.4 Factors of Influenee Oil Glass Transition Temperature
5.3 Viscosity Flow of Polymer
5.3.1 Characteristics of Viscosity Flow
5.3.2 Measure of Shear Viscosity
5.3.3 Factors of Influence on Viscosity Flow Temperature
Chapter 6 MECHANICAL BEHAVLOUR OF POLYMERS
6.1 Mechanieal Behaviour of Amorphous and Crystalline Polymers
6.1.1 Basic Physical Quantities Describing Mechanical Behaviour
6.1.2 Several Common Terms of Mechanical Properties
6.1.3 Tensile Properties of Various Polymers
6.1.4 Yield of Polymms
6.1.5 Fracture and Theoretical Strength of Polymers
6.1.6 Factors Affecting the Actual Strength of Polymers
6.2 Mechanical Behaviour of Elastic Polymers
6.2.1 Application Temperature Range of Rubbers
6.2.2 Characteristics of Elasticity
6.2.3 Phenomenological Descriptions of Rubber Elasticity
6.2.4 Thermodynamic Analysis of Rubber Elasticitv
6.2.5 Statistieal Thermodynamics of Rubber Elasticity
6.2.6 Effects of the Structure of Cross—links and Networks on the Rubber E1asticitv
6.2.7 Internal Energy Effects on the Rubber Elasticity
6.2.8 Ultimate Properties of Rubber
6.3 Mechanical Relaxation of Polymers Viscoelasticity
6.3.1 Mechanical Relaxation Phenomenon of Polymers
6.3.2 Mechanieal Models for Viscoelasticity
6.3.3 The Relationship between Viscoelasticity and Time and Temperature Time—temperature Equivalence Principle
6.3.4 The Bohzmann Superposition Principle(BSP)
Chapter 7 ELECTRICAL AND OPTICAL PROPERTIES OF POLYMERS
7.1 Electrical Polarization and Die]ectric Constant of Polymers
7.1.1 Polarization of Dielectric Media in Electric Field
7.1.2 Interpreting Polarization Effect of Polymer from Molecular Level
7.1.3 Relation between Dielectric Constant and Molecular Polarizabilitv
7.1.4 The Dielectrie Constants of Polymers
7.2 Dieleetrie Loss of Polymers
7.2.1 Dielectric Relaxation and Dielectric Loss
7.2.2 Characterization of Dielectric Loss
7.2.3 Some Factors Effcting on Dielectric Relaxation and Dielectric Loss
7.2.4 Spectra of Dielectric Relaxation in Solid Polymers
7.3 Conduction in Polymers
7.3.1 Characterizatioll of Elec,tric Conduction
7.3.2 Conductive Characteristics of Polymers
7.3.3 Volunle Resistivity and Surface Resistivity
7.3.4 Dependence Relation between Conduction and Structure in Solid Polymer
7.3.5 Influence of Other Factors
7.4 Dielectric Breakdown of Polymers
7.4.1 Dielectric Breakdown and Dielectric Strength
7.4.2 Dielectric Breakdown Mechanisms of Polymer
7.5 Electrostatic Charge Phenomena on Polymer
7.6 Optical Properties of Polymers
7.6.1 Transpalency and Colourlessness
7.6.2 The Refractive Index
前言/序言
深入材料科学前沿:高分子科学的宏观与微观视角 本书旨在为致力于探索高分子材料的结构、性能及其在现代科技中应用的读者,提供一个全面而深入的理论基础与实验视角。 本书不聚焦于特定教材的某一版本或特定教学大纲下的内容安排,而是立足于高分子科学这一交叉学科的广阔图景,系统梳理了从分子链的基本构象到宏观材料特性之间错综复杂的联系。 第一部分:高分子链的统计力学与结构基础 本部分是理解一切高分子现象的基石。我们首先从统计物理学的角度出发,审视单条高分子链在不同环境(如理想溶液、熔体)下的空间行为。 分子链的统计描述与热力学: 详细阐述了如何使用随机游走模型(Random Walk Model)来描述无相互作用链的统计特征,例如均方末端距(Mean Square End-to-End Distance) $langle R^2
angle$ 的计算。引入了高斯链模型(Gaussian Chain Model)和更精确的齐默(Zimm)模型,探讨了排除体积效应(Excluded Volume Effect)对链构象的影响,并用 Flory 记号 $
u$ 来表征这种膨胀程度。对链的熵弹性(Entropic Elasticity)进行了深入分析,解释了橡胶在拉伸过程中恢复形变的微观物理机制,这与理想高分子链的自由度变化紧密相关。 高分子溶液的热力学: 重点分析了高分子链在溶剂中分散体系的热力学稳定性。引入了 Flory-Huggins 理论,详细推导了高分子链在溶剂中混合的自由能变化 $Delta G_m$。通过判据 $chi$ 参数(Flory–Huggins Interaction Parameter)的讨论,清晰界定了良溶剂、不良溶剂和贫溶剂(Theta Solvent)的物理意义及其对溶液粘度和相分离行为的决定性作用。对于聚合电解质体系,则需要引入德拜-休克尔(Debye-Hückel)理论的修正,以处理长程静电相互作用。 链构象与动力学: 探讨了分子链在时间尺度上的运动性。从基本旋转运动开始,引入了蒙特卡罗(Monte Carlo)模拟方法来辅助理解复杂构象的形成。重点讲解了链运动的松弛时间(Relaxation Time)概念,如詹尼-泰珀(Zimm)模型和德格恩(de Gennes)的 reptation 理论,后者尤其在描述高浓度聚合物熔体中长链的扩散行为时至关重要。 第二部分:聚集态结构与形态学 高分子材料的宏观性能主要由其在固态下的组织结构决定。本部分将聚焦于无规线团与有序晶体之间的过渡形态。 结晶学原理: 阐述了高分子结晶的特殊性——与小分子晶体不同,高分子链必须发生折叠(Folding)和搭接(Re-entanglement)才能形成有序结构。详细介绍了球晶(Spherulite)的形成过程,包括核化(Nucleation)和晶面生长机制。讨论了扎伊德尔(Ziegler-Natta)催化剂对聚烯烃结晶形态的影响,以及如何通过偏振光显微镜(POM)观察双折射率和晶体取向。 玻璃化转变(Glass Transition): 这是高分子材料最核心的性能指标之一。深入分析了自由体积理论(Free Volume Theory)和时间-温度等效性原理(Time-Temperature Superposition Principle, TTSP)。详细讲解了威廉姆斯-兰德尔-费里(WLF)方程的推导与应用,用以预测材料在不同温度下的动态粘弹性行为。通过差示扫描量热法(DSC)和动态机械分析(DMA)等实验手段,如何精确测定玻璃化转变温度 $T_g$ 及其对分子量和交联度的依赖关系。 非晶态与半晶态结构: 讨论了非晶高分子中短程有序(Short-Range Order)的存在性,如 X 射线散射(SAXS/WAXS)在确定晶区尺寸和链段排列中的作用。分析了链缠结(Chain Entanglements)对熔体粘度和拉伸强度的影响,并引入了梅尔温(Meltzer)模型来量化缠结密度。 第三部分:高分子形变、流变学与力学性能 本部分着眼于高分子材料如何响应外加的机械应力,并从时间依赖性的角度进行分析。 粘弹性理论: 区分了粘性(Viscous)和弹性(Elastic)行为,并引入了胡克定律和牛顿粘性定律在聚合物体系中的推广形式。详细介绍了粘弹性本构方程,如 Maxwell 模型和 Kelvin-Voigt 模型,以及它们在描述瞬态和稳态响应中的适用性。重点分析了蠕变(Creep)和应力松弛(Stress Relaxation)实验的物理含义。 流变学基础: 讲解了剪切速率、剪切应力与粘度之间的关系。对于聚合物熔体,分析了剪切速率对表观粘度的影响(非牛顿流体行为),特别是剪切变稀(Shear Thinning)现象,并引入了幂律模型(Power Law Model)进行拟合。对于高分子溶液,则需要考虑剪切对链构象的影响,如在强剪切场下链的拉伸和取向。 力学性能的各向异性: 探讨了高分子复合材料和拉伸取向材料的各向异性力学特性。分析了杨氏模量、韧性(Toughness)和脆性(Brittleness)如何与分子量分布、结晶度以及取向度相关联。引入了断裂力学原理在高分子体系中的应用,如对裂纹萌生和扩展的微观理解。 第四部分:界面与宏观应用导向 最后,本书将高分子科学的理论知识与实际应用场景相结合,强调界面作用和功能化设计。 表面与界面现象: 讨论了高分子材料与环境、填料或其他聚合物之间的相互作用。重点分析了表面能对润湿性、粘附力和薄膜形貌的影响。对于复合材料,详细阐述了界面相容性(Interfacial Compatibility)对增强材料力学性能的关键作用,以及表面处理技术(如等离子体处理)如何改变界面化学。 高分子凝聚态的特殊体系: 简要介绍了液晶高分子(Liquid Crystalline Polymers)的结构特征,即介于无定形和晶体之间的介晶相(Mesophase),及其在制造高强度纤维中的重要性。同时,也会涉及对电活性、光敏性高分子(如导电聚合物或光刻胶)的初步介绍,这些体系的行为往往需要引入量子化学或半导体物理学的概念进行辅助理解。 总结: 本书通过系统化的结构安排,力求为读者搭建起一座从微观分子运动到宏观工程应用之间的坚实桥梁。读者在完成学习后,将能够运用统计热力学、动力学和连续介质力学的工具,对任何新型高分子材料的潜在行为进行合理的预测和设计。