电子液体量子理论

电子液体量子理论 pdf epub mobi txt 电子书 下载 2025

朱利安尼 著
图书标签:
  • 量子力学
  • 电子液体
  • 凝聚态物理
  • 从头算方法
  • 密度泛函理论
  • 量子蒙特卡洛
  • 相关能
  • 多体问题
  • 计算物理
  • 材料科学
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510029646
版次:1
商品编码:10762461
包装:平装
开本:16开
出版时间:2011-01-01
用纸:胶版纸
页数:777

具体描述

内容简介

The electron liquid paradigm is at the basis of most of our current understanding of the physical properties of electronic systems. Quite remarkably, the latter are nowadays at the intersection of the most exciting areas of science: materials science, quantum chem- istry, nano-electronics, biology, and quantum computation. Accordingly, its importance can hardly be overestimated. The field is particularly attractive not only for the simplicity of its classic formulation, but also because, by its very nature, it is still possible for individual researchers, armed with thoughtfulness and dedication, and surrounded by a small group of collaborators, to make deep contributions, in the best tradition of "small science".

目录

preface
1 introduction to the electron liquid
1.1 a tale of many electrons
1.2 where the electrons roam: physical realizations of the electron liquid
1.2.1 three dimensions
1.2.2 two dimensions
1.2.3 one dimension
1.3 the model hamiitonian
1.3.1 jeilium model
1.3.2 coulomb interaction regularization
1.3.3 the electronic density as the fundamental parameter
1.4 second quantization
1.4.1 fock space and the occupation number representation
1.4.2 representation of observables
1.4.3 construction of the second-quantized hamiltonian
1.5 the weak coupling regime
1.5.1 the noninteracting electron gas
1.5.2 noninteracting spin polarized states
1.5.3 the exchange energy
1.5.4 exchange energy in spin polarized states
1.5.5 exchange and the pair correlation function
1.5.6 all-orders perturbation theory: the rpa
1.6 the wigner crystal
1.6.1 classical electrostatic energy
1.6.2 zero-point motion
1.7 phase diagram of the electron liquid
1.7.1 the quantum monte carlo approach
1.7.2 the ground-state energy
1.7.3 experimental observation of the electron gas phases
1.7.4 exotic phases of the electron liquid
1.8 equilibrium properties of the electron liquid
1.8.1 pressure, compressibility, and spin susceptibility
1.8.2 the virial theorem
1.8.3 the ground-state energy theorem
exercises

2 the hartree——fock approximation
2.1 introduction
2.2 formulation of the hartree-fock theory
2.2.1 the hartree-fock effective hamiltonian
2.2.2 the hartree-fock equations
2.2.3 ground-state and excitation energies
2.2.4 two stability theorems and the coulomb gap
2.3 hartree-fock factorization and mean field theory
2.4 application to the uniform electron gas
2.4.1 the exchange energy
2.4.2 polarized versus unpolarized states
2.4.3 compressibility and spin susceptibility
2.5 stability of hartree——fock states
2.5.1 basic definitions: local versus global stability
2.5.2 local stability theory
2.5.3 local and global stability for a uniformly polarized electron gas
2.6 spin density wave and charge density wave hartree-fock states
2.6.1 hartree-fock theory of spiral spin density waves
2.6.2 spin density wave instability with contact interactions in one dimension
2.6.3 proof of overhauser's instability theorem
2.7 bcs non number-conserving mean field theory
2.8 local approximations to the exchange
2.8.1 slater's local exchange potential
2.8.2 the optimized effective potential
2.9 real-world hartree-fock systems
exercises

3 linear response theory
3.1 introduction
3.2 general theory of linear response
3.2.1 response functions
3.2.2 periodic perturbations
3.2.3 exact eigenstates and spectral representations
3.2.4 symmetry and reciprocity relations
3.2.5 origin of dissipation
3.2.6 time-dependent correlations and the fiuctuation——dissipation theorem
3.2.7 analytic properties and collective modes
3.2.8 sum rules.
3.2.9 the stiffness theorem
3.2.10 bogoliubov inequality
3.2.11 adiabatic versus isothermal response
3.3 density response
3.3.1 the density——density response function
3.3.2 the density structure factor
3.3.3 high-frequency behavior and sum rules
3.3.4 the compressibility sum rule
3.3.5 total energy and density response
3.4 current response
3.4.1 the current——current response function
3.4.2 gauge invariance
3.4.3 the orbital magnetic susceptibility
3.4.4 electrical conductivity: conductors versus insulators
3.4.5 the third moment sum rule
3.5 spin response
3.5.1 density and longitudinal spin response
3.5.2 high-frequency expansion
3.5.3 transverse spin response
exercises

4 linear response of independent electrons
4.1 introduction
4.2 linear response formalism for non-interacting electrons
4.3 density and spin response functions
4.4 the lindhard function
4.4.1 the static limit
4.4.2 the electron-hole continuum
4.4.3 the nature of the singularity at small q and to
4.4.4 the lindhard function at finite temperature
4.5 transverse current response and landau diamagnetism
4.6 elementary theory of impurity effects
4.6.1 derivation of the drude conductivity
4.6.2 the density-density response function in the presence of impurities
4.6.3 the diffusion pole
4.7 mean field theory of linear response
exercises

5 linear response of an interacting electron liquid
5.1 introduction and guide to the chapter
5.2 screened potential and dielectric function
5.2.1 the scalar dielectric function
5.2.2 proper versus full density response and the compressibility sum rule
5.2.3 compressibility from capacitance
5.3 the random phase approximation
5.3,1 the rpa as time-dependent hartree theory
5.3.2 static screening
5.3.3 plasmons
5.3.4 the electron-hole continuum in rpa
5.3.5 the static structure factor and the pair correlation function
5.3.6 the rpa ground-state energy
5.3.7 critique of the rpa
5.4 the many-body local field factors
5.4.1 local field factors and response functions
5.4.2 many-body enhancement of the compressibility and the spin susceptibility
5.4.3 static response and friedel oscillations
5.4.4 the stls scheme
5.4.5 multicomponent and spin-polarized systems
5.4.6 current and transverse spin response
5.5 effective interactions in the electron liquid
5.5.1 test charge——test charge interaction
5.5.2 electron-test charge interaction
5.5.3 electron-electron interaction
5.6 exact properties of the many-body local field factors
5.6.1 wave vector dependence
5.6.2 frequency dependence
5.7 theories of the dynamical local field factor
5.7.1 the time-dependent hartree-fock approximation
5.7.2 first order perturbation theory and beyond
5.7.3 the mode-decoupling approximation
5.8 calculation of observable properties
5.8.1 plasmon dispersion and damping
5.8.2 dynamical structure factor
5.9 generalized elasticity theory
5.9.1 elasticity and hydrodynamics
5.9.2 visco-elastic constants of the electron liquid
5.9.3 spin diffusion
exercises

6 the perturbative calculation of linear response functions
6.1 introduction
6.2 zero-temperature formalism
6.2.1 time-ordered correlation function
6.2.2 the adiabatic connection
6.2.3 the non-interacting green's function
6.2.4 diagrammatic perturbation theory
6.2.5 fourier transformation
6.2.6 translationa!iy invariant systems
6.2.7 diagrammatic calculation of the lindhard function
6.2.8 first-order correction to the density-density response function
6.3 integral equations in diagrammatic perturbation theory
6.3.1 proper response function and screened interaction
6.3.2 green's function and self-energy
6.3.3 skeleton diagrams
6.3.4 irreducible interactions
6.3.5 self-consistent equations
6.3.6 two-body effective interaction: the local approximation
6.3..7 extension to broken symmetry states
6.4 perturbation theory at finite temperature
exercises

7 density functional theory
7.1 introduction
7.2 ground-state formalism
7.2.1 the variational principle for the density
7.2.2 the hohenberg-kohn theorem
7.2.3 the kohn——sham equation
7.2.4 meaning of the kohn-sham eigenvalues
7.2.5 the exchange-correlation energy functional
7.2.6 exact properties of energy functionals
7.2.7 systems with variable particle number
7.2.8 derivative discontinuities and the band gap problem
7.2.9 generalized density functional theories
7.3 approximate functionais
7.3.1 the thomas-fermi approximation
7.3.2 the local density approximation for the exchange-correlation potential
7.3.3 the gradient expansion
7.3.4 generalized gradient approximation
7.3.5 van der waals functionals
7.4 current density functional theory
7.4.1 the vorticity variable
7.4.2 the kohn-sham equation
7.4.3 magnetic screening
7.4.4 the local density approximation
7.5 time-dependent density functional theory
7.5.1 the runge——gross theorem
7.5.2 the time-dependent kohn-sham equation
7.5.3 adiabatic approximation
7.5.4 frequency-dependent linear response
7.6 the calculation of excitation energies
7.6.1 finite systems
7.6.2 infinite systems
7.7 reason for the success of the adiabatic lda
7.8 beyond the adiabatic approximation
7.8.1 the zero-force theorem
7.8.2 the "ultra-nonlocality" problem
7.9 current density functional theory and generalized hydrodynamics
7.9.1 the xc vector potential in a homogeneous electron liquid
7.9.2 the exchange-correlation field in the inhomogeneous electron liquid
7.9.3 the polarizability of insulators
7.9.4 spin current density functional theory
7.9.5 linewidth of collective excitations
7.9.6 nonlinear extensions
exercises

8 the normal fermi liquid
8.1 introduction and overview of the chapter
8.2 the landau fermi liquid
8.3 macroscopic theory of fermi liquids
8.3.1 the landau energy functional
8.3.2 the heat capacity
8.3.3 the landau fermi liquid parameters
8.3.4 the compressibility
8.3.5 the paramagnetic spin response
8.3.6 the effective mass
8.3.7 the effects of the electron-phonon coupling
8.3.8 measuring m*, k, g* and xs
8.3.9 the kinetic equation
8.3.10 the shear modulus
8.4 simple theory of the quasiparticle lifetime
8.4.1 general formulas
8.4.2 three-dimensional electron gas
8.4.3 two-dimensional electron gas
8.4.4 exchange processes
8.5 microscopic underpinning of the landau theory
8.5.1 the spectral function
8.5.2 the momentum occupation number
8.5.3 quasiparticle energy, renormalization constant, and effective mass
8.5.4 luttinger's theorem
8.5.5 the landau energy functional
8.6 the renormalized hamiitonian approach
8.6.1 separation of slow and fast degrees of freedom
8.6.2 elimination of the fast degrees of freedom
8.6.3 the quasiparticle hamiltonian
8.6.4 the quasiparticle energy
8.6.5 physical significance of the renormalized hamiltonian
8.7 approximate calculations of the self-energy
8.7.1 the gw approximation
8.7.2 diagrammatic derivation of the generalized gw seif-energy
8.8 calculation of quasiparticle properties
8.9 superconductivity without phonons?
8.10 the disordered electron liquid
8.10.1 the quasiparticle lifetime
8.10.2 the density of states
8.10,3 coulomb lifetimes and weak localization in two-dimensional metals
exercises

9 electrons in one dimension and the luttinger liquid
9.1 non-fermi liquid behavior
9.2 the luttinger model
9.3 the anomalous commutator
9.4 introducing the bosons
9.5 solution of the luttinger model
9.5.1 exact diagonalization
9.5.2 physical properties
9.6 bosonization of the fermions
9.6.1 construction of the fermion fields
9.6.2 commutation relations
9.6.3 construction of observables
9.7 the green's function
9.7.1 analytical formulation
9.7.2 evaluation of the averages
9.7.3 non-interacting green's function
9.7.4 asymptotic behavior
9.8 the spectral function
9.9 the momentum occupation number
9.10 density response to a short-range impurity
9.1 ! the conductance of a luttinger liquid
9.12 spin-charge separation
9.13 long-range interactions
exercises

10 the two-dimensional electron liquid at high magnetic field
10.1 introduction and overview
10.2 one-electron states in a magnetic field
10.2.1 energy spectrum
10.2.2 one-electron wave functions
10.2.3 fock-darwin levels
10.2.4 lowest landau level
10.2.5 coherent states
10.2.6 effect of an electric field
10.2.7 slowly varying potentials and edge states
10.3 the integral quantum hall effect
10.3.1 phenomenology
10.3.2 the "edge state" approach
10.3.3 streda formula
10.3.4 the laughlin argument
10.4 electrons in full landau levels: energetics
10.4.1 noninteracting kinetic energy
10.4.2 density matrix
10.4.3 pair correlation function
10.4.4 exchange energy
10.4.5 the "lindhard" function
10.4.6 static screening
10.4.7 correlation energy - the random phase approximation
10.4.8 fractional filling factors
10.5 exchange-driven transitions in tilted field
10.6 electrons in full landau levels: dynamics
10.6.1 classification of neutral excitations
10.6.2 collective modes
10.6.3 time-dependent hartree-fock theory
10.6.4 kohn's theorem
10.7 electrons in the lowest landau level
10.7.1 one full landau level
10.7.2 two-particle states: haldane's pseudopotentials
10.8 the laughlin wave function
10.8.1 a most elegant educated guess
10.8.2 the classical plasma analogy
10.8.3 structure factor and sum rules
10.8.4 interpolation formula for the energy
10.9 fractionally charged quasiparticles
10.10 the fractional quantum hall effect
10.11 observation of the fractional charge
10.12 incompressibility of the quantum hall liquid
10.13 neutral excitations
10.13.1 the single mode approximation
10.13.2 effective elasticity theory
10.13.3 bosonization
10.14 the spectral function
10.14.1 an exact sum rule
10.14.2 independent boson theory
10.15 chern-simons theory
10.15.1 formulation and mean field theory
10.15.2 electromagnetic response of composite particles
10.16 composite fermions
10.17 the half-fi!led state
10.18 the reality of composite fermions
10.19 wigner crystal and the stripe phase
10.20 edge states and dynamics
10.20.1 sharp edges vs smooth edges
10.20.2 electrostatics of edge channels
10.20.3 collective modes at the edge
10.20.4 the chirai luttinger liquid
10.20.5 tunneling and transport
exercises
appendices
appendix 1 fourier transform of the coulomb interaction in low dimensional systems
appendix 2 second-quantized representation of some useful operators
appendix 3 normal ordering and wick's theorem
appendix 4 the pair correlation function and the structure factor
appendix 5 calculation of the energy of a wigner crystal via the ewaid method
appendix 6 exact lower bound on the ground-state energy of the jellium model
appendix 7 the density——density response function in a crystal
appendix 8 example in which the isothermal and adiabatic responses differ
appendix 9 lattice screening effects on the effective electron-electron interaction
appendix 10 construction of the stls exchange-correlation field
appendix 11 interpolation formulas for the local field factors
appendix 12 real space-time form of the noninteracting green's function
appendix 13 calculation of the ground-state energy and thermodynamic potential
appendix 14 spectral representation and frequency summations
appendix 15 construction of a complete set of wavefunctions, with a given density
appendix 16 meaning of the highest occupied kohn-sham eigenvalue in metals
appendix 17 density functional perturbation theory
appendix 18 density functional theory at finite temperature
appendix 19 completeness of the bosonic basis set for the luttinger model
appendix 20 proof of the disentanglement iemma
appendix 21 the independent boson theorem
appendix 22 the three-dimensional electron gas at high magnetic field
appendix 23 density matrices in the lowest landau level
appendix 24 projection in the lowest landau level
appendix 25 solution of the independent boson model
references
index

前言/序言



《混沌边缘:复杂系统中的自组织与涌现》 本书导言:跨越尺度的秩序之舞 在自然界与人工系统中,我们经常目睹一种令人着迷的现象:看似毫无章法的微观互动,却能自发地凝聚成宏大、有序的宏观结构。从细胞群落的协同移动,到湍流中的漩涡形成,再到社会群体中的意见分化,这些“自组织”现象构成了复杂系统行为的核心。本书《混沌边缘:复杂系统中的自组织与涌现》并非探讨微观量子力学或凝聚态物理的精细结构,而是将视角提升至描述性与现象学层面,深入剖析支配这些复杂模式的普遍原理与驱动机制。 第一部分:复杂性的基石——从简单规则到复杂模式 本书的第一部分奠定了理解复杂系统的基础框架,重点关注构成复杂性的基本要素及其相互作用的数学描述,而不涉及量子场论或电子的能级结构。 第一章:非线性动力学的魅力 本章首先介绍了经典动力学系统与非线性系统的本质区别。我们聚焦于为什么线性叠加原理在复杂系统中失效,并详细探讨了反馈机制——正反馈加速变化,负反馈维持稳定——如何成为系统演化的关键驱动力。我们将分析诸如Logistic映射、洛伦兹吸引子等经典模型,展示一个简单的非线性方程如何导向貌似随机、却又受特定边界约束的“混沌”行为。讨论的重点是“相空间”的概念,以及系统轨迹如何在其中穿梭,揭示其内在的确定性。 第二章:阈值、临界点与相变 复杂系统的演化往往不是平滑连续的,而是突然的、剧烈的跃迁。本章集中讨论系统如何跨越“临界点”(或称“分岔点”)实现质变。我们引入统计物理学中的相变概念(如水结冰或磁性消失),并将其抽象化应用于更广义的复杂系统,例如生态系统崩溃或金融市场的崩盘。关键在于理解“控制参数”的变化如何导致系统拓扑结构的变化,从而产生全新的宏观性质。本章将详述平均场理论的局限性以及局域涨落(Fluctuations)在诱导相变中的关键作用。 第三部分:自组织的机制与动力学 本书的核心在于剖析系统如何“无中生有”地创造秩序。本部分深入探讨了驱动自组织的关键机制,这些机制是普遍适用的,独立于构成系统的具体物质载体。 第三章:耗散结构与能量流 本章引入诺贝尔奖得主普里高津提出的“耗散结构”概念。我们论证,远离热力学平衡的开放系统,通过持续地输入能量和排出熵,反而能够维持并发展出高度有序的结构。详细分析了Bénard对流(热驱动的六边形图案形成)作为耗散结构的原型案例。探讨了系统如何消耗自由能来维持其内部的非平衡态,并区分耗散结构与平衡态下的晶体结构之间的根本差异。 第四章:反应-扩散系统与形态发生 形态的形成是自组织最直观的体现。本章专注于图灵(Turing)提出的反应-扩散模型,该模型解释了生物体中斑点和条纹如何仅由两种化学物质的相互作用(激活与抑制)和不同的扩散速率产生。我们详细分析了波的形成、稳定性分析以及“波纹”在空间中传播和干涉的数学机制。本章的案例将扩展到化学振荡反应(如Belousov-Zhabotinsky反应),展示时间上的周期性如何转化为空间上的有序结构。 第五章:网络理论与信息涌现 在现代复杂系统中,连接性至关重要。本章转向网络科学,研究由节点和边构成的系统(如社交网络、神经网络或电网)。我们区别了随机网络(Erdős-Rényi模型)与无标度网络(Scale-Free Networks,如Barabási-Albert模型)。重点分析“小世界效应”和“中心性”如何影响信息的传播速度和系统的鲁棒性。我们探讨了在网络结构中,局部连接如何涌现出全局的鲁棒性和脆弱性。 第三部分:涌现现象的解释与挑战 自组织最终指向的是“涌现”(Emergence)——宏观性质无法直接从微观组成部分简单相加而预测的现象。 第六章:多尺度建模的困境 本章探讨了从微观规则推导宏观行为的巨大挑战。我们介绍了粗粒化(Coarse-Graining)的概念,即如何在不丢失关键信息的前提下,将系统的描述尺度放大。然而,我们指出,对于强非线性耦合的系统,简单的平均化往往会导致关键信息的丢失,特别是在涉及相变和临界现象时。讨论了如何通过多尺度建模来尝试弥合这些尺度间的鸿沟。 第七章:集体智能与群体行为 本章将理论应用于群体行为的研究,包括鸟群飞行(Boids模型)、蚁群觅食(Pheromone Trails)和社会规范的形成。重点不在于个体的智能,而在于信息处理的分布式特性。我们分析了简单的局部互动规则(如“保持距离”、“匹配速度”、“聚集”)如何导致高度协调的全局运动,以及这种集体决策机制在面对环境变化时的适应性优势。 第八章:复杂系统的可控性与设计 在理解了系统如何自发形成结构之后,本书的结论部分转向了如何干预和设计这些系统。我们探讨了“最小干预原理”——如何通过微小的、精确的扰动来引导系统走向期望的宏观状态。讨论了基于网络的控制理论,以及在生物工程和材料科学中,如何利用反应-扩散原理来“编程”物质的形态。本书强调,理解复杂性并非是为了还原论的解释,而是为了更有效地与自然界的自发秩序共存和协作。 总结:非平衡态的宇宙观 《混沌边缘》最终试图提供一个统一的视角:我们所生活的世界,从物理到社会,主要由非平衡的、自组织的过程所塑造。它提供了一套概念工具箱,用于分析那些不遵循简单因果律,却在混沌的边缘展现出惊人秩序的系统。本书避免了对电子、波函数或量子场论的任何深入讨论,而是专注于描述性数学和现象学分析,揭示复杂系统内在的普遍逻辑。

用户评价

评分

单看书名《电子液体量子理论》,就足以勾起我无限的好奇心。我一直觉得,最吸引人的科学探索往往是那些挑战我们直觉、颠覆传统认知的领域。电子,我们熟知的基本粒子,通常被认为是独立的、遵循量子力学规律的个体。然而,“电子液体”这个概念,却暗示着一种截然不同的景象——电子集体表现出类似液体的特性。这让我不禁猜测,书中所探讨的,或许是在描述某些材料中,电子之间强大的关联效应,以至于它们不再是独立的个体,而是形成了一个整体,拥有了类似流体般的动力学行为。我希望这本书能够详细解释,这种“液体”的形成机制是什么?量子效应在其中扮演着怎样的关键角色?它是否能够解释一些奇特的物理现象,例如在某些二维材料中观察到的奇异导电行为?我尤其期待作者能够引领我,通过书中的理论框架,去理解这些微观粒子如何集体行动,以及这种集体行为如何影响我们对物质世界的认识。

评分

当我第一次在书架上看到这本书时,它的书名立刻吸引了我的目光——“电子液体量子理论”。这个名字听起来就充满了前沿和深度,让我联想到那些改变了我们对宇宙认知的革命性科学发现。我普段就喜歡閱讀一些關於物理學的科普讀物,但這本的名字聽起來比一般的科普書更具學術性,這讓我既興奮又有些忐忑。我猜測這本書可能會深入探討在某些條件下,例如極低溫或強磁場環境中,電子所展現出的集體行為。我對“電子液體”這個比喻感到非常好奇,因為我們通常將液體與宏觀的物質狀態聯繫起來,而電子卻是微觀粒子。這本書是否會解釋電子之間如何產生類似於流體分子的相互作用?它們又是如何形成一個整體,表現出我們所熟悉的流體動力學現象的?我希望作者能夠用清晰的語言,即使是對非專業人士,也能理解這些複雜的概念。如果書中能包含一些關於這種電子液體在超導、量子霍爾效應等現象中的作用的討論,那將會是非常有價值的。總之,這本書給我的感覺是,它將引導我探索物理學中最令人興奮的未知領域之一。

评分

这本书的书名,"电子液体量子理论",听起来就充满了严谨的科学探索精神。我平时对物理学的基本原理非常感兴趣,但对于一些高度专业化的理论,往往会望而却步。不过,这本书的书名给我一种既有挑战性又不失引人入胜的感觉。我设想,这本书可能是在解释电子在特定环境下的集体行为,这种行为可能与我们通常理解的单个电子的行为大相径庭。也许作者会深入探讨,当大量的电子聚集在一起时,它们是如何相互作用,并表现出类似宏观物质的特性的。我很想知道,“电子液体”这个概念是如何被引入并解释的,它是否在某种程度上颠覆了我们对自由电子模型的认知?我期待书中能够详细阐述量子力学在理解这种电子集体行为中所扮演的关键角色,比如,电子之间的量子纠缠或相干性是否是形成“电子液体”的基础?如果这本书还能对这种理论在凝聚态物理学中的意义,例如在描述新材料的电学和磁学性质方面,进行一些深入的分析,那将是极具价值的。

评分

这本书的封面设计非常有吸引力,深邃的蓝色背景搭配流动的金色线条,仿佛预示着某种神秘而深奥的科学主题。我一直对前沿物理学有着浓厚的兴趣,尤其是那些能够挑战我们对物质世界理解的理论。虽然我并非量子理论的专业人士,但“电子液体”这个概念本身就激起了我的好奇心。我猜想,这本书可能是在探讨一些非常规的电子行为,或许是在阐述一种与传统自由电子模型不同的、更复杂的电子集体行为。我期待它能以一种相对易懂的方式,为我揭示电子在特定环境下的奇特表现,比如在某些晶体材料中,电子是否会表现出类似流体的性质?它们之间的相互作用又是如何塑造这些“液体”的特性的?我想这本书可能不仅仅是关于理论的堆砌,或许还会包含一些实验观测的证据,或者对这些理论在实际应用上的可能性进行探讨。我尤其希望作者能够描绘出那些隐藏在微观世界中的“电子液体”是如何在我们的生活中发挥作用的,也许是某种新型半导体材料的运作机制,或者是未来量子计算的基石。总而言之,这本书给我的第一印象是充满了科学探索的魅力,让我迫不及待地想要翻开它,进入那个由电子液体构筑的奇妙量子世界。

评分

拿到这本书,名为《电子液体量子理论》,我立即被它的专业性和前沿性所吸引。虽然我不是物理学专业的学生,但对现代物理学的发展趋势一直保持着浓厚的兴趣,特别是那些能解释我们所处世界背后深层规律的理论。我猜测,这本书很可能是在探讨在某些极端条件下,电子不再是孤立的粒子,而是会表现出一种集体涌现的性质,就像液体一样。这让我非常好奇,电子之间是如何产生这种“集体意识”的?它们之间的相互作用,是否在量子层面呈现出一种我们难以想象的复杂性?我想,作者一定在这本书中深入解析了量子力学的框架如何被用来理解这种“电子液体”的行为,或许会涉及量子场论、密度泛函理论等高深的概念。但我更期待的是,书中能否用形象的比喻和清晰的图示,帮助我这个“门外汉”也能领略到这些微观世界的奇妙之处。如果这本书还能触及到电子液体在超导材料、拓扑量子计算等领域的潜在应用,那就更加令人兴奋了。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有