无穷分析引论(下) [Infinite Analysis Introduction]

无穷分析引论(下) [Infinite Analysis Introduction] pdf epub mobi txt 电子书 下载 2025

[瑞士] 欧拉 著,张延伦 译
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 哈尔滨工业大学出版社
ISBN:9787560340005
版次:1
商品编码:11294478
包装:精装
外文名称:Infinite Analysis Introduction
开本:16开
出版时间:2013-07-01
用纸:胶版纸
页数:315
字数:470000
正文语种:中文

具体描述

内容简介

  《无穷分析引论(下)》为微积分预备教程、为弥补初等代数对于微积分的不足,以及为学生从有穷概念向无穷概念过渡而写,读者对象是数学工作者和有一定数学基础的广大数学爱好者。《无穷分析引论(下)》在数学史上地位显赫,是对数学发展影响最大的七部名著之一。

作者简介

  欧拉,1707年4月15日出生于瑞士,是著名的数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一。他也是第一个使用“函数”一词来描述包含各种参数表达式的人,是把微积分应用于物理学的先驱者之一。

内页插图

目录

第一章 曲线概述
第二章 坐标变换
第三章 代数曲线的阶
第四章 各阶线的基本性质
第五章 二阶线
第六章 二阶线分类
第七章 伸向无穷的分支
第八章 关于渐近线
第九章 三阶线的分类
第十章 三阶线的基本性质
第十一章 四阶线
第十二章 曲线的形状
第十三章 曲线的性质
第十四章 曲线的曲率
第十五章 有一条或几条直径的曲线
第十六章 依据纵标性质求曲线
第十七章 依据其他性质求曲线
第十八章 曲线的相似性和仿射性
第十九章 曲线的交点
第二十章 列方程
第二十一章 超越曲线
第二十二章 关于圆的几个问题的解
附录关于曲面
第一章 物体的表面
第二章 曲面与平面的交线
第三章 柱面、锥面、球面的截线
第四章 坐标变换
第五章 二阶面
第六章 曲面与曲面的交线

前言/序言


用户评价

评分

《无穷分析引论(上)》是作为微积分预备教程,为弥补初等代数对于微积分的不足,为学生从有穷概念向无穷概念过渡而写,读者对象是准备攻读和正在攻读数学的学生、数学工作者和广大数学爱好者。《无穷分析引论(上)》在数学史上地位显赫,是对数学发展影响最大的七部名著之一。《无穷分析引论(上)》是作为微积分预

评分

学习欧拉的经典著作对于理解数学大有益处。

评分

朋友推荐的,一直想买来看,因为大师的作品嘛,收到后感觉还是很值得仔细拜读一番的,好评!

评分

  7、《论<数学原理>及其相关系统形式不可判定命题》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)

评分

服务.态度都很好!

评分

4 《数论报告》希尔伯特   

评分

  本书的署名是布尔巴基(Bourbiaki),他不是一个人,而是对现代数学影响巨大的数学家集团。在本世纪30年代由法国的一群年轻数学家结合而成他们把人类长期积累的数学知识按照数学结构整理而成为一个井井有条、博大精深的体系,已出版的近40卷的《数学原理》成为一部经典著作,成为许多研究工作的出发点和参考指南,并成为蓬勃发展的数学科学的主流,这套巨著究竟何时算完,谁也说不清。但是这个体系连同布尔巴基学派对数学的其他贡献,在数学史上是独一无二的。

评分

书的内容很专业,编撰很有条理,让人学起来很容易理解~很适合想要对微积分有个整体把握的同学~推荐大家阅读~

评分

2,逼近元、Cohen因式分解定理、Schwartz空间上的Fourier变换、Abel群上的群代数、Abel群上的不变测度、Abel群上的卷积运算、Abel群上的卷积运算的基本性质、广义函数的卷积运算。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有