內容簡介
The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiitonian formalism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scattering method in its most elegant form. Moreover, the Hamiltonian formalism provides a link between classical and quantum mechanics. So the book is not only an introduction to the classical soliton theory but also the groundwork for the quantum theory of solitons, to be discussed in another volume.
The book is addressed to specialists in mathematical physics. This has determined the choice of material and the level of mathematical rigour. We hope that it will also be of interest to mathematicians of other specialities and to theoretical physicists as well. Still, being a mathematical treatise it does not contain applications of soliton theory to specific physical phenomena.
內頁插圖
目錄
Introduction References
Part One The Nonlinear Schrodinger Equation (NS Model)
Chapter Ⅰ Zero Curvature Representation
1.Formulation of the NS Model
2.Zero Curvature Condition
3.Properties of the Monodromy Matrix in the Quasi-Periodic Case
4.Local Integrals of the Motion
5.The Monodromy Matrix in the Rapidly Decreasing Case
6.Analytic Properties of Transition Coefficients
7.The Dynamics of Transition Coefficients
8.The Case of Finite Density.Jost Solutions
9.The Case of Finite Density.Transition Coefficients
10.The Case of Finite Density.Time Dynamics and Integrals of the Motion
1.Notes and References
References
Chapter Ⅱ The Riemann Problem
1.The Rapidly Decreasing Case.Formulation of the Riemann Problem
2.The Rapidly Decreasing Case.Analysis of the Riemann Problem
3.Application of the Inverse Scattering Problem to the NS Model
4.Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation
5.The Rapidly Decreasing Case.Soliton Solutions
6.Solution of the Inverse Problem in the Case of Finite Density.The Riemann Problem Method
7.Solution of the Inverse Problem in the Case of Finite Density.The Gelfand-Levitan-Marchenko Formulation
8.Soliton Solutions in the Case of Finite Density
9.Notes and References References
Chapter Ⅲ The Hamiltonian Formulation
1.Fundamental Poisson Brackets and the /"-Matrix
2.Poisson Commutativity of the Motion Integrals in the Quasi-Periodic Case
3.Derivation of the Zero Curvature Representation from the Fundamental Poisson Brackets
4.Integrals of the Motion in the Rapidly Decreasing Case and in the Case of Finite Density
5.The A-Operator and a Hierarchy of Poisson Structures
6.Poisson Brackets of Transition Coefficients in the Rapidly Decreasing Case
7.Action-Angle Variables in the Rapidly Decreasing Case
8.Soliton Dynamics from the Hamiltonian Point of View
9.Complete Integrability in the Case of Finite Density
10.Notes and References
References
Part Two General Theory of Integrable Evolution Equations
Chapter Ⅰ Basic Examples and Their General Properties
1.Formulation of the Basic Continuous Models
2.Examples of Lattice Models
3.Zero Curvature Representation's a Method for Constructing Integrable Equations
4.Gauge Equivalence of the NS Model (#=-1) and the HM Model
5.Hamiltonian Formulation of the Chiral Field Equations and Related Models
6.The Riemann Problem as a Method for Constructing Solutions of Integrable Equations
7.A Scheme for Constructing the General Solution of the Zero Curvature Equation. Concluding Remarks on Integrable Equations
8.Notes and References
References
Chapter Ⅱ Fundamental Continuous Models
1.The Auxiliary Linear Problem for the HM Model
2.The Inverse Problem for the HM Model
3.Hamiltonian Formulation of the HM Model 4.The Auxiliary Linear Problem for the SG Model
5.The Inverse Problem for the SG Model
6.Hamiltonian Formulation of the SG Model
Chapter Ⅲ Fundamental Models on the Lattice
Chapter Ⅳ Lie-Algebraic Approach to the Classification and Analysis of Integrable Models Conclusion List of Symbols Index
……
Conclusion
List of Symbols
Index
前言/序言
好的,這是一份關於《孤立子理論中的哈密頓方法》(Hamiltonian Methods in the Theory of Solitons)的圖書簡介。這份簡介將專注於描述該領域內的核心概念、曆史背景、應用範圍以及其重要性,同時嚴格避免提及任何本書的具體內容或章節安排。 --- 圖書簡介:孤立子理論中的哈密頓方法 孤立子:跨越數學與物理的橋梁 在非綫性動力學和場論的廣袤疆域中,孤立波(Soliton)現象占據著一個獨特而核心的地位。它不僅僅是對綫性波傳播模式的一種偏離,更是一種內在的、結構穩定的波包,能夠在相互作用後保持其形態和速度不變。這種非凡的穩定性與可塑性,使得孤立子成為連接純數學結構與實際物理過程的關鍵紐帶。它們廣泛齣現在從光學通信、流體力學到凝聚態物理和高能物理的各個領域。 哈密頓框架:理解動態係統的基石 要深入理解孤立子的起源、演化規律及其內在的穩定性機製,必須藉助一個強大的數學工具——哈密頓力學框架。哈密頓係統是描述保守係統的經典範式,其核心在於通過能量函數(哈密頓量)來定義係統的演化方程。在這個框架內,係統的動態行為通過泊鬆括號而非傳統的牛頓力學推導齣來,提供瞭對對稱性、守恒律以及相位空間幾何的深刻洞察。 當我們將目光投嚮非綫性偏微分方程所描述的物理係統時,一個自然而迫切的問題浮現齣來:這些描述孤立子行為的方程,是否可以被視為一個無限維哈密頓係統的離散化或連續化版本? 哈密頓方法在孤立子研究中的關鍵作用 本書所探討的核心議題,正是圍繞如何運用和發展哈密頓方法來係統地分析和解決孤立子問題。這種方法論的價值在於,它將看似復雜的非綫性演化方程,置於一個結構優美、具有內在一緻性的數學結構之下。 一、從守恒律到可積性: 在哈密頓係統中,守恒量(與哈密頓量對泊鬆括號作用為零的量)是維持係統穩定性的關鍵。在孤立子理論中,發現足夠多的相互作用的守恒量是判斷係統是否具有可積性(Integrability)的標誌之一。可積係統,特彆是那些具有無限多守恒量的係統,往往是能夠精確容納孤立子解的係統。哈密頓方法提供瞭一套係統化的程序來尋找這些守恒量,從而揭示瞭孤立子行為背後的深刻代數結構。 二、譜理論與逆散射變換的聯係: 現代孤立子理論的突破性進展,如逆散射變換(Inverse Scattering Transform, IST),是理解特定非綫性方程(如KdV方程)精確解的關鍵。而哈密頓框架的強大之處在於,它與這些現代解析工具之間存在著深刻的內在聯係。特彆是,對於一維空間中演化的哈密頓係統,其演化規律可以通過譜理論工具來精細刻畫。哈密頓量的結構決定瞭係統的特徵值問題的性質,而這些特徵值在時間演化中往往保持不變——這構成瞭IST方法中“時間演化”部分的物理基礎。 三、幾何與拓撲的視角: 將孤立子視為在無限維函數空間上的運動軌跡,哈密頓方法允許研究者從微分幾何和拓撲學的角度審視這些係統。相位空間的幾何結構,特彆是泊鬆括號所定義的辛(Symplectic)結構,為理解孤立子的碰撞、散射和變形提供瞭直觀的幾何解釋。通過在這些幾何背景下分析哈密頓量,可以推導齣關於孤立子能量分布和相互作用能量轉移的深刻見解。 四、從經典到量子的過渡: 哈密頓力學不僅是經典物理的語言,它也是量子力學的直接先驅。因此,成功地將一個非綫性偏微分方程建立在一個穩健的哈密頓基礎上,為後續的量子化過程奠定瞭堅實的基礎。在凝聚態物理中,描述準粒子激發(如磁振子或電子的某些集體激發)的理論,往往需要從其經典哈密頓模型齣發進行正則量子化。哈密頓方法確保瞭從經典描述到量子描述的映射過程是自洽且守恒的。 研究展望:挑戰與機遇 盡管哈密頓方法在分析可積孤立子係統方麵取得瞭巨大成功,但現實中的許多物理現象(例如,在含有耗散、非局部效應或存在多個場耦閤的係統中)所對應的方程並非完全可積。因此,現代研究的重點已轉嚮如何將哈密頓工具擴展到擬可積(Near-Integrable)係統。這包括研究哈密頓係統中的微擾理論、混沌行為的産生機製,以及如何用哈密頓近似來描述那些僅在特定尺度下錶現齣孤立子特徵的非完全可積係統。 本書旨在提供一個全麵的、結構化的視角,深入探討哈密頓理論如何成為解析孤立子現象、揭示非綫性動態係統內在可積性特徵,以及指導未來非綫性物理研究不可或缺的理論支柱。它麵嚮對數學物理、非綫性動力學和場論有深入興趣的研究人員、高年級研究生和專業學者。