Israel Gelfand,Lectures on Linear Algebra。(這本書看看作者就知道瞭。Gelfand是第一屆Wolf數學奬得主,Kolmogorov的學生,年紀和陳老、華老差不多,現在還活著,在美國的Rutgers大學,他最齣名的工作是建立瞭泛函分析中的賦範環理論,在拓撲學、微分方程、李群李代數、錶示論、生物數學方麵也有開創性的貢獻,比如說Atiyah-Singer指標定理,其實最早是他得齣的。自Kolmogorov去世以後,大概隻有Gelfand還能算是全能數學傢,未來還會不會有這樣的全能數學傢,這是個問題。不過我要指齣,這本書不是一本綫性代數的入門書,40年代的俄羅斯數學係,學生現學習兩學期的高扥代數,主要是方程式論和一些基本的綫性代
評分 評分 評分 評分 評分hhhhhhhhhhjhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhjhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhjhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
評分Halmos,Finite-Dimensional Vector Spaces。(這本書是西方世界最早的兩本綫性代數教材之一,是不是世界上最早的不得而知,因為俄羅斯數學大師Gelfand寫的綫性代數和他是同年齣版。雖然現在綫性代數一門很基本的課程,所有的專業都要學,但是40年代以前,數學係的課程錶上是找不到綫性代數這門課的,隻有“方程式論”或者“高等代數”,主要是講多項式理論和高次方程的解法之類,行列式和矩陣也是講的,但是一般不講綫性變換、綫性空間什麼的。齣現這本課程,很大程度上得益於泛函分析和抽象代數的齣現,還有量子力學的推動。泛函分析裏麵的很多概念都可以看做是綫性代數的進一步發展,比如綫性算子、Hilbert空間等等,Halmos寫這本書的目的就很明確,是要幫助學生學習泛函分析。這本書顧名思義,完全是講綫性空間為綱,我覺得這本書最大的好處就是綫索清晰,非常幾何化,而且篇幅很小,對代數和分析的結閤比較強調,裏麵一些內容在現在的綫性代數書裏找不到,比如說裏麵從綫性代數的角度講瞭遍曆理論的一些基本的內容。)
評分寶貝很給力,講解很係統,我喜歡。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有