单复变函数论(第三版 英文版) [Function Theory of One Complex Variable]

单复变函数论(第三版 英文版) [Function Theory of One Complex Variable] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
[美] 罗伯特·格林(Robert E.Greene) 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-26

图书介绍


出版社: 高等教育出版社
ISBN:9787040469073
版次:1
商品编码:12118836
包装:精装
丛书名: 美国数学会经典影印系列
外文名称:Function Theory of One Complex Variable
开本:16开
出版时间:2017-01-01
用纸:胶版纸
页数:504
字数:710000##


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  复分析是数学*核心的学科之一,不但自身引人入胜、丰富多彩,而且在多种其他数学学科(纯数学和应用数学)中都非常有用。《单复变函数论(第三版 英文版)》的与众不同之处在于它从多变量实微积分中直接发展出复变量。每一个新概念引进时,它总对应了实分析和微积分中相应的概念,《单复变函数论(第三版 英文版)》配有丰富的例题和习题来印证此点。
  作者有条不紊地将分析从拓扑中分离出来,从柯西定理的证明中可见一斑。《单复变函数论(第三版 英文版)》分几章讨论专题,如对特殊函数的完整处理、素数定理和Bergman核。作者还处理了Hp空间,以及共形映射边界光滑性的Painleve定理。
  《单复变函数论(第三版 英文版)》是一本很吸引人且现代的复分析导引,可用作研究生一年级的复分析教材,它反映了作者们作为数学家和写作者的专业素质。

内页插图

目录

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Acknowledgments

Chapter 1. Fundamental Concepts
1.1. Elementary Properties of the Complex Numbers
1.2. Further Properties of the Complex Numbers
1.3. Complex Polynomials
1.4. Holomorphic Functions, the Cauchy-Riemann Equations, and Harmonic Functions
1.5. Real and Holomorphic Antiderivatives
Exercises

Chapter 2. Complex Line Integrals
2.1. Real and Complex Line Integrals
2.2. Complex Differentiability and Conformality
2.3. Antiderivatives Revisited
2.4. The Cauchy Integral Formula and the Cauchy Integral Theorem
2.5. The Cauchy Integral Formula: Some Examples
2.6. An Introduction to the Cauchy Integral Theorem and the Cauchy Integral Formula for More General Curves
Exercises

Chapter 3. Applications of the Cauchy Integral
3.1. Differentiability Properties of Holomorphic Functions
3.2. Complex Power Series
3.3. The Power Series Expansion for a Holomorphic Function
3.4. The Cauchy Estimates and Liouville's Theorem
3.5. Uniform Limits of Holomorphic Functions
3.6. The Zeros of a Holomorphic Function
Exercises

Chapter 4. Meromorphic Functions and Residues
4.1. The Behavior of a Holomorphic Function Near an Isolated Singularity
4.2. Expansion around Singular Points
4.3. Existence of Laurent Expansions
4.4. Examples of Laurent Expansions
4.5. The Calculus of Residues
4.6. Applications of the Calculus of Residues to the Calculation of Definite Integrals and Sums
4.7. Meromorphic Functions and Singularities at Infinity
Exercises

Chapter 5. The Zeros of a Holomorphic Function
5.1. Counting Zeros and Poles
5.2. The Local Geometry of Holomorphic Functions
5.3. Further Results on the Zeros of Holomorphic Functions
5.4. The Maximum Modulus Principle
5.5. The Schwarz Lemma
Exercises

Chapter 6. Holomorphic Functions as Geometric Mappings
6.1. Biholomorphic Mappings of the Complex Plane to Itself
6.2. Biholomorphic Mappings of the Unit Disc to Itself
6.3. Linear Fractional Transformations
6.4. The Riemann Mapping Theorem: Statement and Idea of Proof
6.5. Normal Families
6.6. Holomorphically Simply Connected Domains
6.7. The Proof of the Analytic Form of the Riemann Mapping Theorem
Exercises

Chapter 7. Harmonic Functions
7.1. Basic Properties of Harmonic Functions
7.2. The Maximum Principle and the Mean Value Property
7.3. The Poisson Integral Formula
7.4. Regularity of Harmonic Functions
7.5. The Schwarz Reflection Principle
7.6. Harnack's Principle
7.7. The Dirichlet Problem and Subharmonic Functions
7.8. The Perrbn Method and the Solution of the Dirichlet Problem
7.9. Conformal Mappings of Annuli
Exercises

Chapter 8. Infinite Series and Products
8.1. Basic Concepts Concerning Infinite Sums and Products
8.2. The Weierstrass Factorization Theorem
8.3. The Theorems of Weierstrass and Mittag-Leffler: Interpolation Problems
Exercises

Chapter 9. Applications of Infinite Sums and Products
9.1. Jensen's Formula and an Introduction to Blaschke Products
9.2. The Hadamard Gap Theorem
9.3. Entire Functions of Finite Order
Exercises

Chapter 10. Analytic Continuation
10.1. Definition of an Analytic Function Element
10.2. Analytic Continuation along a Curve
10.3. The Monodromy Theorem
10.4. The Idea of a Riemann Surface
10.5. The Elliptic Modular Function and Picard's Theorem
10.6. Elliptic Functions
Exercises

Chapter 11. Topology
11.1. Multiply Connected Domains
11.2. The Cauchy Integral Formula for Multiply Connected Domains
11.3. Holomorphic Simple Connectivity and Topological Simple Connectivity
11.4. Simple Connectivity and Connectedness of the Complement
11.5. Multiply Connected Domains Revisited
Exercises

Chapter 12. Rational Approximation Theory
12.1. Runge's Theorem
12.2. Mergelyan's Theorem
12.3. Some Remarks about Analytic Capacity
Exercises

Chapter 13. Special Classes of Holomorphic Functions
13.1. Schlicht Functions and the Bieberbach Conjecture
13.2. Continuity to the Boundary of Conformal Mappings
13.3. Hardy Spaces
13.4. Boundary Behavior of Functions in Hardy Classes
[An Optional Section for Those Who Know
Elementary Measure Theory]
Exercises

Chapter 14. Hilbert Spaces of Holomorphic Functions, the Bergman Kernel, and Biholomorphic Mappings
14.1. The Geometry of Hilbert Space
14.2. Orthonormal Systems in Hilbert Space
14.3. The Bergman Kernel
14.4. Bell's Condition R
14.5, Smoothness to the Boundary of Conformal Mappings
Exercises

Chapter 15. Special Functions
15.1. The Gamma and Beta Functions
15.2. The Riemann Zeta Function
Exercises

Chapter 16. The Prime Number Theorem
16.0. Introduction
16.1. Complex Analysis and the Prime Number Theorem
16.2. Precise Connections to Complex Analysis
16.3. Proof of the Integral Theorem
Exercises
APPENDIX A: Real Analysis
APPENDIX B: The Statement and Proof of Goursat's Theorem
References
Index

前言/序言

  This third edition follows the overall plan and even the specific arrangement of topics of the second edition, but there have been substantial changes in matters of detail. A considerable number of the proofs, especially in the later chapters, have been corrected, clarified, or simplified. Many of the exercises have been revised, and in many cases the exercises have been rearranged to make for greater consistency and less duplication. The mathematical roads that this new edition follows are the same as before, but we hope that the ride is considerably smoother.
  We are indebted to Harold Boas and Gerald B. Folland for their extremely careful reading of the second edition in the course of their using the book as a text. They provided far more suggestions and corrections than we had any right to expect of anyone but ourselves, and to the extent that this edition is superior to the previous, it is very largely to that extent that we are in their debt. Any remaining errors are, of course, our responsibility.
  Rahul Fernandez brought mathematical expertise, typesetting skills, and a great deal of patience to the daunting task of taking our heavily marked and indeed sometimes scribbled-upon manuscript of the second edition and making this third one. We are grateful to him for his efforts. We also thank the publishing staff of the American Mathematical Society for their willingness to undertake a third edition and for their support in general.
单复变函数论(第三版 英文版) [Function Theory of One Complex Variable] 下载 mobi epub pdf txt 电子书 格式

单复变函数论(第三版 英文版) [Function Theory of One Complex Variable] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

单复变函数论(第三版 英文版) [Function Theory of One Complex Variable] 下载 mobi pdf epub txt 电子书 格式 2024

单复变函数论(第三版 英文版) [Function Theory of One Complex Variable] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

包装完整,快递相对较快,内容写的不错,排版很舒服。

评分

内容好,价格适中

评分

618之前就做起了活动,还是没忍住,就提前买了,还是挺划算的。

评分

挺好的啊,最近质量有所提高

评分

对Riemann Zeta函数有较为详尽的论述

评分

对Riemann Zeta函数有较为详尽的论述

评分

刚收到商品,带塑封还没拆开看

评分

是一本好书,在证明,结构上,知识点和国内的教材不一样,都很丰富。非常好的一本书。包装也很好,有质感。

评分

书不错,从内容到装订印刷都很好

类似图书 点击查看全场最低价

单复变函数论(第三版 英文版) [Function Theory of One Complex Variable] mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有