統一理論和超對稱(第3版)

統一理論和超對稱(第3版) pdf epub mobi txt 電子書 下載 2025

[美] 莫哈帕特拉 著
圖書標籤:
  • 物理學
  • 理論物理
  • 超對稱
  • 統一場論
  • 粒子物理
  • 弦理論
  • 量子場論
  • 高能物理
  • 數學物理
  • 現代物理學
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510005718
版次:1
商品編碼:10104529
包裝:平裝
開本:24開
齣版時間:2010-04-01
用紙:膠版紙
頁數:421
正文語種:英語

具體描述

內容簡介

  《統一理論和超對稱(第3版)》是作者依據其為馬裏蘭大學高年級研究生授課時所用的講義編著而成,詳細介紹瞭人們嘗試建立一個能夠描述自然界中各種基本相互作用的大統一理論的最新進展。《統一理論和超對稱(第3版)》包羅甚廣,涉及到粒子物理學中的大統一理論和超對稱理論中的許多議題,例如自發對稱破缺,大統一理論,超對稱性和超引力等。作者在簡要迴顧瞭基本粒子理論之後,詳細介紹瞭復閤誇剋,輕子,希格斯玻色子和CP破壞等論題,最後討論超對稱的大統一方案。這是《統一理論和超對稱(第3版)》的第三版,進一步修訂瞭書中內容,添入該領域的最新進展,特彆是近年來實驗方麵的諸多進展。對這些新進展的集中介紹很有意義,使得《統一理論和超對稱(第3版)》成為該領域中連接傳統理論與研究前沿的有益橋梁。無論對該領域的研究生還是對研究人員來講,《統一理論和超對稱(第3版)》都是一部很有價值的教科書和參考文獻。

內頁插圖

目錄

Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
1 Important Basic Concepts in Particle Physics
1.1 Introduction
1.2 Symmetries and Currents
1.3 Local Symmetries and Yang-Mills Fields
1.4 Quantum Chromodynamic Theory of Strong Interactions
1.5 Hidden Symmetries of Weak Interactions
References

2 Spontaneous Symmetry Breaking
2.1 Symmetries and Their Realizations
2.2 Nambu-Goldstone Bosons for an Arbitrary Non-Abelian Group
2.3 Some Properties of Nambu-Goldstone Bosons
2.4 Phenomenology of Massless and Near-Massless Spin-0 Bosons
2.5 The Higgs-Kibble Mechanism in Gauge Theories
2.6 Group Theory of the Higgs Phenomenon
2.7 Renormalizability and Triangle Anomalies
References

3 The SU(2)L x U(1) Model
3.1 The SU(2)L x U(1) Model of Glashow, Weinberg, and Salam
3.2 Neutral-Current Interactions
3.3 Masses and Decay Properties of W and Z Bosons
3.4 Fermion Masses and Mixing
3.5 Higher-Order-Induced Flavor-Changing Neutral-Current Effects
3.6 The Higgs Bosons
3.7 SU(2)L x U(1) Model with Two Higgs Doublets
3.8 Puzzles of the Standard Model
3.9 Outline of the Various Scenarios
3.10 Beyond the Standard Model
References

4 CP Violation: Weak and Strong
4.1 CP Violation in Weak Interactions
4.2 CP Violation in Gauge Models: Generalities
4.3 The Kobayashi-Maskawa Model
4.4 Left-Right Symmetric Models of CP Violation
4.5 The Higgs Exchange Models
4.6 Strong CP Violation and the 0-Problem
4.7 Solutions to the Strong CP Problem without the Axion
4.8 Summary
References

5 Grand Unification and the SU(5) Model
5.1 The Hypothesis of Grand Unification
5.2 SU(N) Grand Unification
5.3 Sin2 Ow in Grand Unified Theories (GUT)
5.4 SU(5)
5.5 Grand Unification Mass Scale and Sin2θw at Low Energies
5.6 Detailed Predictions of the SU(5) Model for Proton Decay
5.7 Some Other Aspects of the SU(5) Model
5.8 Gauge Coupling Unification with Intermediate Scales before Grand Unification
References

6 Symmetric Models of Weak Interactions and Massive Neutrinos
6.1 Why Left-Right Symmetry?
6.2 The Model, Symmetry Breaking, and Gauge Boson Masses
6.3 Limits on MzR and rnwR from Charged-Current Weak Interactions
6.4 Properties of Neutrinos and Lepton-Number-Violating Processes
6.5 Baryon Number Nonconservation and Higher Unification
6.6 Sin2θw and the Scale of Partial Unification
6.7 Left-Right Symmetry——An Alternative Formulation
6.8 Higher Order Effects
6.9 Conclusions
References

7 SO(10) Grand Unification
7.1 Introduction
7.2 SO(2N) in an SU(N) Basis [3]
7.3 Fermion Masses and the "Charge Conjugation" Operator
7.4 Symmetry-Breaking Patterns and Intermediate Mass Scales
7.5 Decoupling Parity and SU(2)R Breaking Scales
7.6 Second Z Boson
References

8 Technicolor and Compositeness
8.1 Why Compositeness?
8.2 Technicolor and Electroweak Symmetry Breaking
8.3 Techni-Composite Pseudo-Goldstone Bosons
8.4 Fermion Masses
8.5 Composite Quarks and Leptons
8.6 Light Quarks and Leptons and t Hooft Anomaly Matching
8.7 Examples of t Hooft Anomaly Matching
8.8 Some Dynamical Constraints on Composite Models
8.9 Other Aspects of Composite Models
8.10 Symmetry Breaking via Top-Quark Condensate
References

9 Global Supersymmetry
9.1 Supersymmetry
9.2 A Supersymmetric Field Theory
9.3 Two-Component Notation
9.4 Superfields
9.5 Vector and Chiral Superfields
References

10 Field Theories with Global Supersymmetry
10.1 Supersymmetry Action
10.2 Supersymmetric Gauge Invariant Lagrangian
10.3 Feynman Rules for Supersymmetric Theories [3]
10.4 Allowed Soft-Breaking Terms
References

11 Broken Supersymmetry and Application to Particle Physics
11.1 Spontaneous Breaking of Supersymmetry
11.2 Supersymmetric Analog of the Goldberger Treiman Relation
11.3 D-Type Breaking of Supersymmetry
11.4 ORaifeartaigh Mechanism or F-Type Breaking of Supersymmetry
11.5 A Mass Formula for Supersymmetric Theories and the Need for Soft Breaking
References

12 Minimal Supersymmetric Standard Model
12.1 Introduction, Field Content and the Lagrangian
12.2 Constraints on the Masses of Superparticles
12.3 Other Effects of Superparticles
12.4 Why Go beyond the MSSM?
12.5 Mechanisms for Supersymmetry Breaking
12.6 Renormalization of Soft Supersymmetry-Breaking Parameters
12.7 Supersymmetric Left-Right Model
References
13 Supersymmetric Grand Unification
14 Local Supersymmetry (N = 1)
15 Application of Supergravity (N = 1) to Particle Physics
16 Beyond N = 1 Supergravity
17 Superstrings and Quark-Lepton Physics
Index

精彩書摘

  three-quark bound states, whereas meson spectroscopy arises from nonrela tivistic quark-antiquark bound states. Accepting quarks as the constituents of hadrons, we have to search for a field theory that provides the bindingforce between the quarks.
  In trying to understand the Fermi statistics for baryons (such as ), itbecame clear that if they are S-wave bound states, then the space part oftheir wave function is totally symmetric; since a particle such as consists of three strange quarks, and has spin 3/2, the spin part of its wave functionis symmetric. If there were no other degree of freedom, this would be indisagreement with the required Fermi statistics. A simple way to resolvethis problem is to introduce [11] a threefold degree of freedom for quarks,called color (quarks being color triplets) and assume that all known baryonsare singlet under this new SU(3). Since an SU(3)c-singlet constructed outof three triplets is antisymmetric in the interchange of indices (quarks), thetotal baryon wave function is antisymmetric in the interchange of any twoconstituents as required by Fermi statistics.
  It is now tempting to introduce strong forces by making SU(3)c into alocal symmetry. In fact, if this is done, we can show that exchange of theassociated gauge bosons provides a force for which the SU(3)c color singletis the lowest-lying state; and triplet, sextet, and octet states all have highermass. By choosing this mass gap large, we can understand why excitedstates corresponding to the color degree of freedom have not been found.
  While this argument in favor of an SU(3)c gauge theory of strong inter-action was attractive, it was not conclusive. The most convincing argumentin favor of SU(3)c gauge theory came from the experimental studies of deepinelastic neutrino and electron scattering off nucleons. These experimentsinvolved the scattering of very-high-energy (E) electronsand neutrinoswith the exchange of very high momentum transfers (i.e., q2 large). It wasfound that the structure functions, which are analogs of form factors forlarge q2 and E, instead of falling with q2, became scale-invariant functionsdepending only on the ratio q2/2mE. This was known as the phenomenonof scaling [12]. Two different theoretical approaches were developed to un-derstand this problem. The first was an intuitive picture called the partonmodel suggested by Feynman [13] and developed by Bjorken and Paschos[14], where it was assumed that, at very high energies, the nucleon can bethought of as consisting of free pointlike constituents. The experimentalresults also showed that these pointlike constituents were spin-l/2 objects,like quarks, and the scaling function was simply the momentum distri-bution function for the partons inside the nucleon. These partons couldbe identified with quarks, thus providing a unified description of the nu-cleon as consisting of quarks at low, as well as at high, energies. The maindistinction between these two energy regimes uncovered by deep inelas-tic scattering experiments is that at low energies the forces between thequarks are strong, whereas at high energies the forces vanish letting thequarks float freely inside the nucleons.

前言/序言

  The new millennium has brought new hope and vigor to particle physics.The menacing clouds of despair and discontent that enveloped the fieldfollowing the collapse of SSC have all but vanished. The discovery of neu-trino mass has brought the first light of new physics beyond the standardmodel. The LEP-SLC data has given strong hints of a light Higgs boson,which is widely hoped, will be discovered soon either at the Tevatron of LHC. LEP may quite possibly have missed it by a hair. Many neutrinoexperiments are either underway or are in the planning stages, and a roughoutline of neutrino mixing is appearing on the horizon. There are discussions of pulling resources internationally to build a linear collider after theLHC. Many major breakthroughs in the sister discipline of cosmology havelightened up the sky. Even the job situation in the field is showing signs of improvement after a long plateau.
  All this hope and optimism about a bright future for the field seem tobe resting on two ideas: unification and supersymmetry. The first is based on the amazing success of the standard model, giving credence to the possibility that the final theory of particle physics could come from gaugetheories and string theory, from which the gauge symmetries follow. The belief in supersymmetry arises not only from its beauty and elegance and its ability to truly unify matter and forces but also from the way it em- braces gravity into the fold of particle physics. Its hold on the field is almost as pervasive as that of gauge theories. Even though there are many other competing ideas vying for the attention of theorists, the general direction seems to be largely set towards supersymmetry, supergravity, and super- strings.

弦論、圈量子引力與前沿物理學:探索時空、物質與統一的邊界 一本深入前沿物理學核心議題的權威著作,聚焦於當前理論物理學麵臨的最為根本性的挑戰:如何構建一個兼容量子力學與廣義相對論的統一框架。 本書匯集瞭二十一世紀以來理論物理學界最引人注目的兩大學派——弦理論(String Theory)和圈量子引力(Loop Quantum Gravity, LQG)——的最新進展、核心思想和數學工具。它並非對某一既有成熟理論的簡單綜述,而是對探索物理學終極統一圖景的多種路徑的嚴謹審視與批判性分析。 第一部分:時空幾何的量子化——圈量子引力的深度解析 本捲首先深入探討瞭圈量子引力(LQG)的數學基礎與物理圖像。LQG力圖通過對愛因斯坦場方程進行後量化處理,構建一個量子化的時空幾何理論,避免瞭傳統量子場論在描述引力時齣現的無窮大問題。 核心章節聚焦於: 阿斯泰卡(Ashtekar)變量的再詮釋: 詳細闡述瞭如何利用規範場論的語言重構廣義相對論,引入瞭“連接”(Connection)和“電場”(Electric Field)變量,為Hamiltonian的量子化奠定瞭堅實基礎。 自鏇網絡(Spin Networks)與自鏇泡沫(Spin Foams): 深入剖析瞭由羅傑·彭羅斯提齣的自鏇網絡在LQG中的核心作用。自鏇網絡如何編碼量子化的麵積和體積算符,構建瞭離散的時空結構。進而,探討瞭自鏇泡沫作為自鏇網絡隨時間演化的路徑積分配方,如何描述量子時空的動力學演化。 離散時空的物理後果: 分析瞭LQG對奇點問題的處理,特彆是大爆炸奇點如何被“量子反彈”(Big Bounce)所取代的物理情景。討論瞭在低能極限下,如何從離散的量子幾何中恢復齣連續的黎曼幾何,以及這一恢復過程中的挑戰與限製。 圈量子宇宙學(Loop Quantum Cosmology, LQC): 專門闢章講解瞭LQG在宇宙學尺度上的應用,對比瞭其與標準$Lambda$CDM模型在早期宇宙演化描述上的關鍵差異,及其對暴脹理論可能性的修正。 第二部分:高維時空與萬有理論的追求——弦理論的幾何與代數景觀 本書的第二部分將焦點轉嚮弦理論(String Theory),將其視為一個更宏大的“萬有理論”(Theory of Everything)的候選者。本部分強調弦論不僅僅是粒子物理學的延伸,更是一套深刻的幾何與拓撲語言。 主要內容涵蓋: 基本弦模型與超對稱的必要性: 迴顧瞭玻色弦理論的局限,以及引入費米子以消除量子反常的必然性,從而引齣超對稱(Supersymmetry)作為連接玻色子與費米子的基本對稱性。詳細探討瞭I型、IIA、IIB、異域(Heterotic)等五種超弦理論的基本結構和它們在九維空間中的嵌入方式。 對偶性(Duality)的革命: 集中論述瞭弦論中最具啓發性的概念之一——對偶性。從T-對偶到S-對偶,解析瞭不同理論描述在特定極限下如何等價,揭示瞭弦理論內部的豐富結構。特彆是對偶性如何暗示瞭十維背景並非唯一的描述方式。 膜(Branes)物理學與AdS/CFT對應: 深入分析瞭D膜(Dirichlet Branes)的物理意義,它們如何充當開放弦的端點,並構成瞭粒子物理學(如標準模型)在弦論中的低能描述。隨後,重點介紹反德西特空間/共形場論(AdS/CFT)對應關係,闡釋瞭它如何將一個高維引力問題(如黑洞動力學)轉化為一個低維、無引力的量子場論問題,並討論瞭其在強耦閤係統研究中的巨大潛力。 卡拉比-丘(Calabi-Yau)幾何與緊緻化: 探討瞭如何通過將多餘的六維空間進行緊緻化,從而在低能(四維)恢復齣我們觀測到的物理定律和粒子譜。詳細討論瞭卡拉比-丘流形的選擇對費米子種類和耦閤常數的影響,以及“景觀問題”(Landscape Problem)的嚴峻性。 第三部分:統一的挑戰與未來方嚮 最後一部分將理論物理學的兩個前沿領域進行直接對話與比較,探討它們在解決引力量子化問題上的殊途同歸與根本差異。 本書批判性地分析瞭以下關鍵議題: 1. 背景依賴性與背景獨立性: 詳細對比瞭弦論的背景依賴性(即需要預設一個時空背景纔能進行計算)與圈量子引力的背景獨立性(時空本身是量子化的結果)之間的哲學和技術差異。 2. 黑洞熵的計算: 考察瞭兩個理論如何計算黑洞的貝肯斯坦-霍金(Bekenstein-Hawking)熵。弦論通過對D膜微觀態的計數得到精確匹配,而LQG則通過對量子化的視界麵幾何進行計算,分析兩者在不同情景下的適用範圍和結果的契閤度。 3. 低能極限的恢復: 探究瞭如何從復雜的弦論或LQG框架中,精確地推導齣愛因斯坦的廣義相對論和標準模型,這是任何“萬有理論”必須跨越的門檻。 4. 實驗可檢驗性: 審視瞭當前理論在尋找實驗證據方麵的睏境,以及在普朗剋尺度之外,是否存在任何低能可觀測信號(如對宇宙微波背景的微小擾動、額外維度的痕跡或量子引力修正)的理論預測。 本書旨在為高年級研究生、博士後研究人員以及對基礎物理學有深刻理解的讀者提供一個全麵、深入且不迴避爭議的視角,推動讀者參與到這場定義二十一世紀物理學麵貌的偉大探索中。它要求讀者具備紮實的微分幾何、拓撲學和量子場論基礎,以便充分領會其中復雜的數學結構和深刻的物理洞察。

用戶評價

評分

這本書的裝幀設計真是深得我心。封麵采用瞭一種啞光的質感,深邃的藍色調搭配著簡潔的白色和金色的字體,透露齣一種沉穩而又不失現代感的學術氣息。翻開內頁,紙張的選擇也非常考究,厚實且不反光,長時間閱讀下來眼睛也不會感到疲勞。版式布局清晰明瞭,章節標題和正文之間的留白處理得當,使得閱讀的節奏感非常舒適。就連索引和參考文獻部分的排版都顯得井井有條,查找起來十分方便。細節之處見真章,這本厚重的著作在實體呈現上做到瞭既有分量感,又不失為一件值得收藏的藝術品。每一次翻閱,都能感受到齣版方在圖書製作上的匠心獨運,這對於嚴肅的學術書籍來說,無疑是加分項。

評分

從內容深度來看,這本書的廣博程度令人嘆為觀止。它不僅僅是簡單地羅列現有模型,而是深入剖析瞭各個流派思想的內在矛盾與潛在的統一可能性。書中對模型演化過程的梳理極為詳盡,甚至不惜篇幅去探討那些已經被主流理論所淘汰的早期嘗試,這使得讀者能夠更深刻地理解當前理論為何會以這種形態存在。對於那些試圖在某一特定領域鑽研的讀者來說,這本書提供瞭一個極佳的宏觀視角,讓你清楚地知道自己所處的理論高地是建立在怎樣一片廣袤的知識平原之上的。它成功地在“全麵性”與“深度”之間找到瞭一個近乎完美的平衡點,絕非市麵上常見的那些浮光掠影的概論性讀物可比。

評分

這本書的翻譯質量,坦白說,是超齣我預期的。麵對如此高度專業化、充滿術語和復雜句式的原文,翻譯工作是一項巨大的挑戰,但譯者團隊顯然投入瞭極大的心血。我對比瞭幾個關鍵術語的翻譯,發現他們不僅準確地傳達瞭原文的字麵意思,更重要的是,成功地捕捉到瞭物理概念的精髓和上下文的語境。例如,對於一些在不同理論體係中有細微差彆定義的詞匯,譯者采用瞭統一且規範的中文錶達,避免瞭閱讀中的混淆。流暢度上,中文行文自然流暢,沒有那種生硬的“翻譯腔”,讀起來非常順口,這極大地提升瞭閱讀體驗,讓非母語讀者也能無障礙地沉浸於前沿的科學探討之中。

評分

我花瞭整整一個下午的時間,試圖梳理一下這本書的敘述邏輯,感覺作者在構建理論框架時采用瞭非常精妙的“螺鏇上升”結構。它不是簡單地堆砌公式和定義,而是循序漸進地引導讀者進入核心概念。一開始,作者用非常直觀的類比和曆史背景鋪墊瞭基礎,讓你在不感到壓迫的情況下掌握瞭必要的數學工具。隨後,隨著章節的深入,信息的密度和抽象程度逐步提高,但每一次提升都有前文紮實的鋪墊作為支撐。這種處理方式極大地降低瞭初學者望而卻步的門檻,同時也為資深研究者提供瞭深入探索的階梯。我特彆欣賞作者在引入復雜數學結構時,那種仿佛在和你進行一場高水平的、但又耐心十足的對話的敘事風格,讓人感覺自己是參與者而非單純的接受者。

評分

關於書中案例和習題的設置,我認為這是本書最具實踐指導價值的部分之一。通常這種級彆的著作,習題要麼過於簡單,要麼復雜到脫離實際,但這本書的例題設計簡直是教科書級彆的典範。它們緊密圍繞著理論核心,但又巧妙地避開瞭教科書式的直接套用。我嘗試解答瞭其中關於邊界條件設定的幾個問題,發現這些問題真正考驗的是對物理直覺和數學技巧的綜閤運用能力。更棒的是,作者在解答部分的處理上非常謹慎,沒有直接給齣最終答案,而是提供瞭詳盡的解題思路和關鍵步驟的提示,鼓勵讀者獨立思考。這種“點撥式”的教學方法,對於培養獨立解決問題的能力具有不可替代的作用。

評分

哈哈哈哈哈哈哈哈哈哈哈哈哈哈

評分

書很不錯,物流速度也很快。

評分

哈哈哈哈哈哈哈哈哈哈哈哈哈哈

評分

看名字就知道講的是大統一理論和超對稱,需要學完量子場論再來看。

評分

看名字就知道講的是大統一理論和超對稱,需要學完量子場論再來看。

評分

可以啊~

評分

看名字就知道講的是大統一理論和超對稱,需要學完量子場論再來看。

評分

可以

評分

可以啊~

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有