印刷质量很好,讲解很细致
评分好书一本,价廉物美,一如既往,名不虚传,下次继续。
评分挺好用的,是正品,京东买放心。
评分计数组合学是组合数学的重要研究方向之一,主要研究有限集合上的组合结构在给定条件下的计数问题。本文的主要工作包括以下几个方面: 在第一章,定义了两族广义p-Stirling数,将二项式系数和经典Stirling数统一起来。讨论广义p-Stirling数的组合意义,将一维的有限集合分拆和排列推广到p-维情形;得到p-Stifling数的封闭形式的差分恒等式;并研究p-Stirling矩阵的行列式性质。 在第二章,研究一种简单而又重要的组合结构——Dyck路,这是近几年国内外的组合学者研究的一个热点课题。首先刻画了波谷严格递增的Dyck路与整数有序分拆之间的关系;然后利用双射、生成树以及Riordan阵的方法来对集合D_m的一些子集进行计数,得到一些以经典的序列如Catalan数、Narayana数、Motzkin数、Fibonacci数、Schr(?)der数以及第一类无符号Stirling数来计数的组合结构。特别地,给出两个新的Catalan结构,它们并没有出现在Stanley所给的关于Catalan结构的列表中。最后定义一种新的有禁排列模式,并讨论关联Dyck路与这种有禁排列之间的一些问题。 在第三章,研究广义Fibonacci多项式的代数性质,包括广义Fibonacci多项式的系数组成的矩阵的性质;广义Fibonacci多项式系数的组合意义;以及广义Fibonacci多项式的普通型卷积求和公式。 在第四章,基于MacMahon分拆技巧,将Sellers关于整数分拆的一个定理推广到更一般的情形(即将向量限制形式推广到矩阵限制形式),并给出了大量有益的应用,其中涉及到许多经典的序列如Bell数、Fibonacci数、Lucas数和Pell数等。利用二叉表示之间的变换来研究将整数N表示成不同Fibonacci数之和的表示法的公式R(N),得到了R(N)的新的递推关系式,通过这些关系,很容易计算R(N)在N很大时的值 本书是《计数组合学》第一卷的中文版,共分为四章。第一章介绍了计数组合学的基本知识,包括生成函数、集合与重集、排列统计量以及组合计数的十二模式等;第二章介绍了计数组合学的筛法理论,包括容斥原理及其在限位排列问题、Ferrers棋盘问题、V-分拆以及单峰序列中的应用,另外还有对合原理及其在行列式中的应用;第三章介绍了偏序集理论,包括偏序集的基本概念、Mobius反演理论、二项型偏序集理论等。第四章介绍了有理生成函数理论,包括单变量有理幂级数、P-分拆、齐次线性Diophantine方程组和转移矩阵法等。本书的选材几乎覆盖了基本计数组合学的所有理论,参考文献非常翔实。特别值得一提的是,书中提供了大量的不同难度的习题,其中包括一些未解决的公开问题,可以帮助读者更好地学习和理解相关的理论。
评分不错~~不错~~不错~
评分真的非常喜欢这款商品,真的真的非常喜欢!!!
评分真的非常喜欢这款商品,真的真的非常喜欢!!!
评分不错~~不错~~不错~
评分不错~~不错~~不错~
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有