内容简介
《数学物理方程(第2版)》首先系统地介绍数学模型的导出和各类定解问题的解题方法,然后再讨论三类典型方程的基本理论。这种处理方式,便于教师授课时选讲和自学者选读。书中内容深入浅出,方法多样,文字通俗易懂,并配有大量难易兼顾的例题与习题。
《数学物理方程(第2版)》可作为数学和应用数学、信息与计算科学、物理、力学专业的本科生以及工科相关专业的研究生的教材和教学参考书,也可作为非数学专业本科生的教材(不讲或选讲第6章)和教学参考书。另外,也可供数学工作者、物理工作者和工程技术人员作为参考书。
目录
第1章 典型方程的导出.定解问题及二阶方程的分类与化简.
1.1 典型方程的导出
1.1.1 守恒律
1.1.2 变分原理
1.2 偏微分方程的基本概念
1.2.1 定义
1.2.2 定解条件和定解问题
1.2.3 定解问题的适定性
1.3 二阶线性偏微分方程的分类与化简
1.3.1 两个自变量的二阶线性偏微分方程的分类与化简
1.3.2 多个自变量的二阶线性偏微分方程的分类
习题1
第2章 Fourier级数方法——特征展开法和分离变量法
2.1 引言
2.2 预备知识
2.2.1 二阶线性常微分方程的通解
2.2.2 线性方程的叠加原理
2.2.3 正交函数系
2.3 特征值问题
2.3.1 Sturm-Liouville问题
2.3.2 例子
2.4 特征展开法
2.4.1 弦振动方程的初边值问题
2.4.2 热传导方程的初边值问题
2.5 分离变量法——Laplace方程的边值问题
2.5.1 圆域内Laplace方程的边值问题
2.5.2 矩形上的Laplace方程的边值问题
2.6 非齐次边界条件的处理
2.7 物理意义.驻波法与共振
习题2
第3章 积分变换法
3.1 Fourier变换的概念和性质
3.2 Fourier变换的应用
3.2.1 一维热传导方程的初值问题
3.2.2 高维热传导方程的初值问题
3.2.3 一维弦振动方程的初值问题
3.2.4 其他类型的方程
3.3 半无界问题:对称延拓法
3.3.1 热传导方程的半无界问题
3.3.2 半无界弦的振动问题
3.4 Laplace变换的概念和性质
3.5 Laplace变换的应用
习题3
第4章 波动方程的特征线法.球面平均法和降维法
4.1 弦振动方程的初值问题的行波法
4.2 dAlembert公式的物理意义
4.3 三维波动方程的初值问题——球面平均法和Poisson公式
4.3.1 三维波动方程的球对称解
4.3.2 三维波动方程的Poisson公式
4.3.3 非齐次方程.推迟势
4.4 二维波动方程的初值问题——降维法
4.5 依赖区域.决定区域.影响区域.特征锥
4.6 Poisson公式的物理意义.Huygens原理
习题4
第5章 位势方程
5.1 Green公式与基本解
5.1.1 Green公式
5.1.2 基本解的定义
5.2 调和函数的基本积分公式及一些基本性质
5.3 Green函数
5.3.1 Green函数的概念
5.3.2 Green函数的性质
5.4 几种特殊区域上的Green函数及Dirichlet边值问题的可解性
5.4.1 球上的Green函数.Poisson公式
5.4.2 上半空间的Green函数.Poisson公式
5.4.3 四分之一平面上的Green函数
5.4.4 半球域上的Green函数
5.5 调和函数的进一步性质——Poisson公式的应用
习题5
第6章 三类典型方程的基本理论
6.1 双曲型方程
6.1.1 初值问题的能量不等式.解的适定性
6.1.2 混合问题的能量模估计与解的适定性
6.2 椭圆型方程
6.2.1 极值原理.最大模估计与解的惟一性
6.2.2 能量模估计与解的惟一性
6.3 抛物型方程
6.3.1 极值原理与最大模估计
6.3.2 第一初边值问题解的最大模估计与惟一性
6.3.3 第三初边值问题解的最大模估计与惟一性
6.3.4 初值问题的极值原理.解的最大模估计与惟一性
6.3.5 初边值问题的能量模估计与解的惟一性
习题6
附录一积分变换表
附录二参考答案
参考文献
前言/序言
经过几年的教学实践和体会,作者认为有必要对本书的部分内容进行调整和改写。又因为2007年年底出版的教学辅导书《数学物理方程学习指导与习题解答》(王明新,王晓光编著)一书中,包含了第一版的所有习题的解答。这给教师在教学过程中布置作业带来了困难。鉴于此,经与出版社协商,决定对本书进行修订。这一版与第一版比较,有以下方面的改动:
除个别作为重要结论和公式的习题外,更换了几乎所有的习题。
第1章基本没有改动,只是修改了个别词语和第一版中的印刷错误。
第2章的改动较大。因为分离变量法和特征展开法实质上是一回事,读者在该课程的先修课程“微积分”和“常微分方程”中已经掌握了幂级数展开和幂级数解法。因此,特征展开法和分离变量法相比较,在理论上前者更系统、直观,容易接受,在计算方面前者更简单、直接。又因为特征展开法和分离变量法都是求解有界区域上的定解问题的基本方法,所以在第二版中,分别系统介绍了特征展开法和分离变量法,并把特征展开法放在了前面,更加强调和突出了此方法。又考虑到篇幅和课时的因素,在特征展开法一节只介绍双曲型方程和抛物型方程,在分离变量法一节只介绍Laplace方程。为了让读者也能够掌握用分离变量法求解双曲型方程和抛物型方程的初边值问题的方法,本章安排了几个这方面的习题。
因为特征展开法的基础是特征值问题的基本理论和结果,所以在这一版中,加强了特征值的内容。又因为在特征展开法中将直接用到常微分方程的常数变易公式,而不再利用偏微分方程的齐次化原理(Duhamel原理),并且常微分方程的常数变易公式与偏微分方程的齐次化原理的叙述和证明完全相同。所以在预备知识部分,把常微分方程的常数变易公式用齐次化原理的形式表述并证明,把偏微分方程的齐次化原理留做了习题。
数学物理方程(第2版) 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
京东物流很给力!上午下的单下午就送过来了
评分
☆☆☆☆☆
《数学物理方程(第2版)》可作为数学和应用数学、信息与计算科学、物理、力学专业的本科生以及工科相关专业的研究生的教材和教学参考书,也可作为非数学专业本科生的教材(不讲或选讲第6章)和教学参考书。另外,也可供数学工作者、物理工作者和工程技术人员作为参考书。《数学物理方程(第2版)》首先系统地介绍数学模型的导出和各类定解问题的解题方法,然后再讨论三类典型方程的基本理论。这种处理方式,便于教师授课时选讲和自学者选读。书中内容深入浅出,方法多样,文字通俗易懂,并配有大量难易兼顾的例题与习题。
评分
☆☆☆☆☆
数理方程没有防伪标签 质量很差 不像是正版的
评分
☆☆☆☆☆
不错的书,买了不后悔。 这本书的质量不错。 值得你拥有。
评分
☆☆☆☆☆
评分
☆☆☆☆☆
好好好好好好好好^ω^,,,
评分
☆☆☆☆☆
数理方程没有防伪标签 质量很差 不像是正版的
评分
☆☆☆☆☆
京东物流很给力!上午下的单下午就送过来了
评分
☆☆☆☆☆
送给朋友的,感觉还好