內容簡介
       this book consists of solutions to 400 exercises, over 95% of which arein my book Mathematical Statistics. Many of them are standard exercisesthat also appear in other textbooks listed in the references.  It is onlya partial solution manual to Mathematical Statistics (which contains over900 exercises). However, the types of exercise in Mathematical Statistics notselected in the current book are (1) exercises that are routine (each exerciseselected in this book has a certain degree of difficulty), (2) exercises similarto one or several exercises selected in the current book, and (3) exercises foradvanced materials that are often not included in a mathematical statisticscourse for first-year Ph.D. students in statistics (e.g., Edgeworth expan-sions and second-order accuracy of confidence sets, empirical likelihoods,statistical functionals, generalized linear models, nonparametric tests, andtheory for the bootstrap and jackknife, etc.). On the other hand, this isa stand-alone book, since exercises and solutions are comprehensibleindependently of their source for likely readers.  To help readers notusing this book together with Mathematical Statistics, lists of notation,terminology, and some probability distributions are given in the front ofthe book.     
內頁插圖
          目錄
   Preface
Notation
Terminology
Some Distributions
Chapter 1. Probability Theory
Chapter 2. Fundamentals of Statistics
Chapter 3. Unbiased Estimation
Chapter 4. Estimation in Parametric Models
Chapter 5. Estimation in Nonparametric Models
Chapter 6. Hypothesis Tests
Chapter 7. Confidence Sets
References
Index      
前言/序言
     Since the publication of my book Mathematical Statistics (Shao, 2003), Ihave been asked many times for a solution manual to the exercises in mybook. Without doubt, exercises form an important part of a textbookon mathematical statistics, not only in training students for their researchability in mathematical statistics but also in presenting many additionalresults as complementary material to the main text. Written solutionsto these exercises are important for students who initially do not havethe skills in solving these exercises completely and are very helpful forinstructors of a mathematical statistics course (whether or not my bookMathematical Statistics is used as the textbook) in providing answers tostudents as well as finding additional examples to the main text. Moti-vated by this and encouraged by some of my colleagues and Springer-Verlageditor John Kimmel, I have completed this book, Mathematical Statistics:Exercises and Solutions.
  This book consists of solutions to 400 exercises, over 95% of which arein my book Mathematical Statistics. Many of them are standard exercisesthat also appear in other textbooks listed in the references. It is onlya partial solution manual to Mathematical Statistics (which contains over900 exercises). However, the types of exercise in Mathematical Statistics notselected in the current book are (1) exercises that are routine (each exerciseselected in this book has a certain degree of difficulty), (2) exercises similarto one or several exercises selected in the current book, and (3) exercises foradvanced materials that are often not included in a mathematical statisticscourse for first-year Ph.D. students in statistics (e.g., Edgeworth expan-sions and second-order accuracy of confidence sets, empirical likelihoods,statistical functionals, generalized linear models, nonparametric tests, andtheory for the bootstrap and jackknife, etc.). On the other hand, this isa stand-alone book, since exercises and solutions are comprehensibleindependently of their source for likely readers. To help readers notusing this book together with Mathematical Statistics, lists of notation,terminology, and some probability distributions are given in the front ofthe book.    
				
 
				
				
					數理統計:從基礎理論到前沿應用  書籍簡介  本書旨在為讀者提供一個全麵、深入且具有實踐指導意義的數理統計學習路徑。我們聚焦於統計學核心理論的嚴謹構建,並輔以大量詳實的實例分析,以期幫助讀者不僅掌握統計學的“是什麼”,更能理解其“為什麼”和“怎麼用”。全書內容覆蓋瞭從概率論基礎到高級推斷方法的廣闊領域,力求在理論深度與實際應用之間架起一座堅實的橋梁。  第一部分:概率論與隨機變量基礎  數理統計的根基在於概率論。本部分將係統迴顧和深化讀者對概率空間、隨機變量、概率分布等基本概念的理解。我們從測度論的視角審視概率的定義,確保理論基礎的牢固性。  1. 概率空間與隨機變量: 詳細闡述 $sigma$-代數、可測函數及其在概率空間中的意義。隨機變量的定義、分類(離散、連續、混閤)及其期望、方差等矩的計算方法得到細緻的討論。特彆關注Lebesgue積分與Riemann積分在概率論中的聯係與區彆。 2. 重要概率分布: 深入剖析常見的單變量和多變量概率分布,如二項分布、泊鬆分布、正態分布、卡方分布、t分布和F分布。對於多維隨機變量,重點分析其聯閤分布、邊際分布、條件期望,以及協方差矩陣的性質。嚮量值隨機變量的特徵函數和聯閤中心極限定理是本節的難點與重點。 3. 大數定律與中心極限定理: 檢驗樣本均值的收斂性和極限分布是統計推斷的基礎。本書將介紹強大數定律和弱大數定律的不同版本,並提供中心極限定理的多種形式(如Lindeberg-Feller CLT),解析其在統計推斷中的普適性。  第二部分:統計推斷的基礎框架  在概率論的堅實基礎上,本部分轉嚮統計推斷的核心:如何從有限樣本中可靠地提取信息並對總體做齣判斷。  1. 隨機樣本與統計量: 明確隨機樣本的概念,並係統介紹各種常用的統計量,如樣本均值、樣本方差、矩估計量等。重點討論統計量的分布,特彆是基於正態總體的各種二次型統計量的分布特性。 2. 參數估計理論:      點估計: 詳盡介紹矩估計法(MOM)和最大似然估計法(MLE)。對於MLE,我們將深入探討其漸近性質(一緻性、漸近正態性、漸近有效性),並闡述Cramér-Rao下界理論,用以衡量估計量的優劣。      區間估計: 講解置信區間的構建原理,包括基於樞軸量、delta方法以及Bootstrap方法的構建技巧。重點分析不同置信水平的實際含義和穩健性。  第三部分:假設檢驗的嚴謹方法  假設檢驗是統計決策的核心工具。本部分旨在提供一套係統而嚴謹的檢驗流程和評估標準。  1. 檢驗原理與結構: 界定原假設 ($H_0$) 和備擇假設 ($H_1$),詳細解釋I類錯誤(顯著性水平 $alpha$)和II類錯誤(功效 $1-eta$)。介紹似然比檢驗(LRT)作為構建最優檢驗量的通用框架。 2. 經典檢驗方法: 涵蓋參數假設檢驗的主要內容,包括:      基於正態性假設的t檢驗、F檢驗(方差齊性檢驗)。      卡方檢驗(擬閤優度檢驗、獨立性檢驗)。      基於非參數方法的檢驗,例如Wilcoxon符號秩檢驗、Mann-Whitney U檢驗的原理介紹。 3. 檢驗的性能評估: 不僅關注p值的使用,更強調檢驗功效的計算和提升。討論穩健性(Robustness)問題,即當模型假設被輕微違反時,檢驗的性能如何變化。  第四部分:綫性模型的統計推斷  綫性模型是應用統計學中最強大和最常用的工具之一。本部分側重於多元數據分析的理論基礎。  1. 多元正態分布: 作為多元迴歸分析的理論前提,對多元正態分布的性質(如邊緣分布、條件分布、獨立性、二次型的分布)進行詳盡的闡述。 2. 一般綫性模型(GLM): 深入探討多元綫性迴歸模型的最小二乘估計(OLS)的性質,包括估計量的無偏性、有效性和分布。重點解析高斯-馬爾可夫定理及其在OLS最優性中的地位。 3. 模型診斷與推斷: 講解如何進行係數的顯著性檢驗(t檢驗)、模型的整體顯著性檢驗(F檢驗)。深入討論殘差分析、共綫性問題(方差膨脹因子VIF)以及異方差性(如White檢驗)的處理和修正方法。  第五部分:進階主題與統計計算  為使讀者接觸現代統計學的最新發展,本部分引入瞭更復雜的模型和計算方法。  1. 非參數統計的深度探討: 介紹核密度估計(KDE)的理論基礎,包括核函數的選擇和帶寬(Bandwidth)的優化。討論經驗過程(Empirical Processes)在現代統計推斷中的作用。 2. 統計計算與模擬方法: 闡述濛特卡洛(Monte Carlo)模擬在復雜積分和分布逼近中的應用。詳細介紹馬爾可夫鏈濛特卡洛(MCMC)方法,特彆是Metropolis-Hastings算法和Gibbs抽樣,它們是貝葉斯統計計算不可或缺的工具。 3. 貝葉斯統計導論: 從頻率學派的視角引入貝葉斯框架,討論先驗分布、似然函數和後驗分布的構建。介紹如何利用後驗分布進行參數估計和區間預測,並對比貝葉斯方法與經典方法的哲學差異和實際優勢。  適用對象  本書內容嚴謹、推導詳盡,適閤於數學、統計學、物理學、工程學、經濟學及生物統計學等專業的高年級本科生、研究生,以及需要深入理解統計學理論基礎的科研人員和數據分析師。閱讀本書需要具備紮實的微積分和綫性代數基礎,以及初步的概率論知識。  本書特色  本書的重點在於理論的內在邏輯和推導的完整性。每一個核心概念的引入都伴隨著嚴格的數學證明或清晰的邏輯闡述。我們避免瞭對復雜計算過程的過度簡化,力求呈現一個真實、無捷徑的數理統計學習體驗。每一章末尾設置瞭具有挑戰性的思考題,用以鞏固和拓展讀者的理論掌握程度。