| 书名: | 纯数学教程(英文版·第10版)|17149 |
| 图书定价: | 65元 |
| 图书作者: | (英)G.H.Hardy |
| 出版社: | 机械工业出版社 |
| 出版日期: | 2004/2/1 0:00:00 |
| ISBN号: | 711113785X |
| 开本: | 16开 |
| 页数: | 509 |
| 版次: | 10-1 |
| 作者简介 |
| 6. H.Hardy英国数学家(1877—1947)。1896年考入剑桥三一学院,并子1900年在剑桥获得史密斯奖。之后,在英国牛津大学。剑桥大学任教,是20世纪初著名的数学分析家之一。 他的贡献包括数论中的丢番图逼近、堆垒数论、素数分布理论与黎曼函数,调和分析中的三角级数理论。发散级数求和与陶伯定理。不等式、积分变换与积分方程等方面,对分析学的发展有深刻的影响。以他的名字命名的Hp空间(哈代空间),至今仍是数学研究中十分活跃的领域。 除本书外,他还著有《不等式》、《发散级数》等10多部书籍与300多篇文章。 |
| 内容简介 |
| 自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。 在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思 想、无穷级数的性质以及包括极限概念在内的其他题材。 |
| 目录 |
CONTENTS (Entries in small print at the end of the contents of each chapter refer to subjects discussed incidentally in the examples) CHAPTER I REAL VARIABLES SECT. 1-2. Rational numbers 3-7. Irrational numbers 8. Real numbers 9. Relations of magnitude between real numbers 10-11. Algebraical operations with real numbers 12. The number 2 13-14. Quadratic surds 15. The continum 16. The continuous real variable 17. Sections of the real numbers. Dedekind's theorem 18. Points of accumulation 19. Weierstrass's theorem . Miscellaneous examples CHAPTER II FUNCTIONS OF REAL VARIABLES 20. The idea of a function 21. The graphical representation of functions. Coordinates 22. Polar coordinates 23. Polynomias 24-25. Rational functions 26-27. Aigebraical functious 28-29. Transcendental functions 30. Graphical solution of equations 31. Functions of two variables and their graphical repre- sentation 32. Curves in a plane 33. Loci in space Miscellaneous examples CHAPTER III COMPLEX NUMBERS SECT. 34-38. Displacements 39-42. Complex numbers 43. The quadratic equation with real coefficients 44. Argand's diagram 45. De Moivre's theorem 46. Rational functions of a complex variable 47-49. Roots of complex numbers Miscellaneous examples CHAPTER IV LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50. Functions of a positive integral variable 51. Interpolation 52. Finite and infinite classes 53-57. Properties possessed by a function of n for large values of n 58-61. Definition of a limit and other definitions 62. Oscillating functions 63-68. General theorems concerning limits 69-70. Steadily increasing or decreasing functions 71. Alternative proof of Weierstrass's theorem 72. The limit of xn 73. The limit of(1+ 74. Some algebraical lemmas 75. The limit of n(nX-1) 76-77. Infinite series 78. The infinite geometrical series 79. The representation of functions of a continuous real variable by means of limits 80. The bounds of a bounded aggregate 81. The bounds of a bounded function 82. The limits of indetermination of a bounded function 83-84. The general principle of convergence 85-86. Limits of complex functions and series of complex terms 87-88. Applications to zn and the geometrical series 89. The symbols O, o, Miscellaneous examples CHAPTER V LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS AND DISCONTINUOUS FUNCTIONS 90-92. Limits as x-- or x--- 93-97. Limits as z-, a 98. The symbols O, o,~: orders of smallness and greatness 99-100. Continuous functions of a real variable 101-105. Properties of continuous functions. Bounded functions. The oscillation of a function in an interval 106-107. Sets of intervals on a line. The Heine-Borel theorem 108. Continuous functions of several variables 109-110. Implicit and inverse functions Miscellaneous examples CHAPTER VI DERIVATIVES AND INTEGRALS 111-113. Derivatives 114. General rules for differentiation 115. Derivatives of complex functions 116. The notation of the differential calculus 117. Differentiation of polynomials 118. Differentiation of rational functions 119. Differentiation of algebraical functions 120. Differentiation of transcendental functions 121. Repeated differentiation 122. General theorems concerning derivatives, Rolle's theorem 123-125. Maxima and minima 126-127. The mean value theorem 128. Cauchy's mean value theorem SECT. 129. A theorem of Darboux 130-131. Integration. The logarithmic function 132. Integration of polynomials 133-134. Integration of rational functions 135-142. Integration of algebraical functions. Integration by rationalisation. Integration by parts 143-147. Integration of transcendental functions 148. Areas of plane curves 149. Lengths of plane curves Miscellaneous examples CHAPTER VII ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS 150-151. Taylor's theorem 152. Taylor's series 153. Applications of Taylor's theorem to maxima and minima 154. The calculation of certain limits 155. The contact of plane curves 156-158. Differentiation of functions of several variables 159. The mean value theorem for functions of two variables 160. Differentials 161-162. Definite integrals 163. The circular functions 164. Calculation of the definite integral as the limit of a sum 165. General properties of the definite integral 166. Integration by parts and by substitution 167. Alternative proof of Taylor's theorem 168. Application to the binomial series 169. Approximate formulae for definite integrals. Simpson's rule 170. Integrals of complex functions Miscellaneous examples CHAPTER VIII THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS SECT. PAGE 171-174. Series of positive terms. Cauchy's and d'Alembert's tests of convergence 175. Ratio tests 176. Dirichlet's theorem 177. Multiplication of series of positive terms 178-180. Further tests for convergence. Abel's theorem. Mac- laurin's integral test 181. The series n-s 182. Cauchy's condensation test 183. Further ratio tests 184-189. Infinite integrals 190. Series of positive and negative terms 191-192. Absolutely convergent series 193-194. Conditionally convergent series 195. Alternating series 196. Abel's and Dirichlet's tests of convergence 197. Series of complex terms 198-201. Power series 202. Multiplication of series 203. Absolutely and conditionally convergent infinite integrals Miscellaneous examples CHAPTER IX THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS OF A REAL VARIABLE 204-205. The logarithmic function 206. The functional equation satisfied by log x 207-209. The behaviour of log x as x tends to infinity or to zero 210. The logarithmic scale of infinity 211. The number e 212-213. The exponential function 214. The general power ax 215. The exponential limit 216. The logarithmic limit SECT. 217. Common logarithms 218. Logarithmic tests of convergence 219. The exponential series 220. The logarithmic series 221. The series for arc tan x 222. The binomial series 223. Alternative development of the theory 224-226. The analytical theory of the circular functions Miscellaneous examples CHAPTER X THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS 227-228. Functions of a complex variable 229. Curvilinear integrals 230. Definition of the logarithmic function 231. The values of the logarithmic function 232-234. The exponential function 235-236. The general power a 237-240. The trigonometrical and hyperbolic functions 241. The connection between the logarithmic and inverse trigonometrical functions 242. The exponential series 243. The series for cos z and sin z 244-245. The logarithmic series 246. The exponential limit 247. The binomial series Miscellaneous examples The functional equation satisfied by Log z, 454. The function e, 460. Logarithms to any base, 461. The inverse cosine, sine, and tangent of a complex number, 464. Trigonometrical series, 470, 472-474, 484, 485. Roots of transcendental equations, 479, 480. Transformations, 480-483. Stereographic projection, 482. Mercator's projection, 482. Level curves, 484-485. Definite integrals, 486. APPENDIX I. The proof that every equation has a root APPENDIX II. A note on double limit problems APPENDIX III. The infinite in analysis and geometry APPENDIX IV. The infinite in analysis and geometry INDEX |
在一次偶然的机会下,我接触到了《纯数学教程》(第10版)。坦白说,起初我对这类“纯数学”的图书抱有一种敬畏甚至是畏惧的态度,总觉得它们离我所理解的“实用”知识太过遥远。然而,这本教程彻底颠覆了我的固有印象。它所展现的数学之美,是一种纯粹的、逻辑的、严谨的美。Hardy的写作风格,仿佛一位技艺高超的建筑师,精心设计每一个章节,将复杂的数学结构搭建得既稳固又充满艺术感。我尤其欣赏他对于数学证明的严谨性要求,每一个推导都环环相扣,不留一丝含糊。这对于培养严谨的逻辑思维能力有着不可估量的价值。我曾花大量时间去理解一个看似简单的命题,正是通过Hardy的引导,我才意识到,数学的深刻之处往往隐藏在那些最基本的定义和公理之中。这种对基础的重视,让我受益匪浅,无论是在学习后续更高级的数学课程,还是在解决实际问题时,那种严谨的分析方法都成了我解决问题的利器。这本书不仅仅是传授知识,更是一种思维方式的塑造。
评分我一直认为,学习数学,尤其是纯数学,需要一种沉浸式的体验,而《纯数学教程》(英文版第10版)恰恰提供了一个这样的绝佳环境。它并非那种为了应付考试而设计的速成指南,而是真正致力于让读者理解数学的本质。Hardy用他独到的视角,将看似枯燥的公式和定理赋予了生命。我记得在学习级数那一章时,最初感到非常吃力,但Hardy通过引入一些有趣的数列和与之相关的几何图形,将抽象的收敛概念具体化,让我眼前一亮。他不仅仅是展示“是什么”,更是深入挖掘“为什么”,这种探究式的写作风格,极大地激发了我的学习兴趣。我喜欢他在讲解中穿插的一些历史典故和数学家的故事,这让冰冷的数学充满了人性的温度,也让我看到了数学发展的艰辛与辉煌。这本书对我最大的影响,在于它教会我如何去“思考”数学,而不是仅仅去“记忆”数学。这种由内而外的学习体验,让我对数学产生了前所未有的亲近感。
评分作为一名对数学充满好奇的自学者,我曾尝试过许多不同的教材,但《纯数学教程》(英文版第10版)是我至今为止最满意的一本。它就像一本数学的百科全书,但又不失引导性和启发性。Hardy的讲解风格非常独特,他善于用简洁而优美的语言,将复杂的数学概念娓娓道来。我特别喜欢他对于数学逻辑性的强调,书中每一个定理的证明都力求做到滴水不漏,这对我培养严谨的逻辑分析能力起到了至关重要的作用。我曾反复阅读书中关于集合论和拓扑学的章节,每一次阅读都有新的体会。Hardy并没有把这些概念生硬地抛给读者,而是循序渐进地构建起一个严密的理论框架,让读者在不知不觉中掌握了核心的思想。这本书的另一个优点是它的深度和广度兼具。它既深入探讨了纯数学的各个分支,又对这些分支之间的联系进行了清晰的梳理,让我能够对整个数学体系有一个宏观的认识。我常常会因为它书中引申出的某个话题而深入研究,这种“授人以渔”的学习方式,是我在其他教材中很少获得的。
评分我一直对数学充满热情,但有时会因为概念的抽象和证明的繁复而感到困惑。《纯数学教程》(英文版第10版)这本书,就像一道数学界的清泉,洗涤了我心中的迷茫。Hardy的文字,与其说是教学,不如说是数学的艺术表达。他能够将最抽象的数学思想,用最直观、最富有诗意的方式呈现出来。我尤其欣赏他在讲解数论和代数结构时所展现出的洞察力。他并不满足于仅仅给出定义和公式,而是深入剖析了这些概念的内在逻辑和它们之间的微妙联系。我曾经花了整整一个下午去琢磨书中关于“素数分布”的某个猜想,Hardy的讲解让我从全新的角度理解了这个问题的复杂性和它的迷人之处。这本书不仅仅是知识的传递,更是一种对数学精神的传承。它让我明白,数学并非冷冰冰的计算,而是充满创造力和想象力的探索过程。我常常在阅读时,感受到一种与Hardy在思想上的共鸣,仿佛他就在我的耳边,细语着数学的奥秘。
评分这本《纯数学教程》在我数学学习的道路上扮演了至关重要的角色。我还记得第一次翻开它时的心情,既好奇又带着一丝忐忑。毕竟,纯数学听起来就充满了挑战。然而,Hardy的文字以一种意想不到的清晰和优雅,将那些抽象的概念展现在我眼前。他对数学的深刻理解,以及他引导读者一步步深入探索的热情,是如此具有感染力。初学时,我可能只是囫囵吞枣般地理解了一些基本定理,但随着时间的推移,我越来越能体会到其中精妙之处。比如,书中对微积分基础的阐述,不仅仅是公式的堆砌,更是对极限、连续性等概念的严谨逻辑推导,这让我对整个数学体系有了更坚实的基础认知。我特别喜欢他在引入新概念时,总是会先从一个直观的例子或者一个类比开始,这极大地降低了学习的门槛,让我能够更好地将抽象的数学语言与现实世界联系起来。即便是现在回想起,我依然能清晰地回忆起某些证明过程中的关键步骤,那种豁然开朗的感觉,至今仍令我回味无穷。这本书不仅仅是一本教材,更像是一位耐心的导师,引领着我在数学的广阔天地里徜徉。
评分谢谢!
评分不错
评分谢谢!
评分不错
评分不错
评分谢谢!
评分不错
评分不错
评分不错
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有