| 图书基本信息 | |
| 书名: | 人工智能:Python实现(影印版)(英文版) |
| 丛书名: | |
| 作者/主编: | 普拉提克·乔希 |
| 出版社: | 东南大学出版社 |
| ISBN号: | 9787564173586 |
| 出版年份: | 2017年10月 |
| 版次: | 第1版 |
| 总页数: | 431页 |
| 开本: | 16 |
| 图书定价: | 88元 |
| 实际重量: | 0.7kg |
| 新旧程度: | 正版全新 |
《人工智能:Python实现(影印版)(英文版)》由东南大学出版社出版。
作者:(美国)普拉提克·乔希(Prateek Joshi)
Preface
Chapter 1: Introduction to Artificial Intelligence
What is Artificial Intelligence?
Why do we need to study Al?
Applications of Al
Branches of Al
Defining intelligence using Turing Test
Making machines think like humans
Building rational agents
General Problem Solver
Solving a problem with GPS
Building an intelligent agent
Types of models
Installing Python 3
Installing on Ubuntu
Installing on Mac OS X
Installing on Windows
Installing packages
Loading data
Summary
Chapter 2: Classification and Regression Using Supervised Learning
Supervised versus unsupervised learning
What is classification?
Preprocessing data
Binarization
Mean removal
Scaling
Normalization
Label encoding
Logistic Regression classifier
Naive Bayes classifier
Confusion matrix
Support Vector Machines
Classifying income data using Support Vector Machines
What is Regression?
Building a single variable regressor
Building a multivariable regressor
Estimating housing prices using a Support Vector Regressor
Summary
Chapter 3: Predictive Analytics with Ensemble Learning
What is Ensemble Learning?
Building learning models with Ensemble Learning
What are Decision Trees?
Building a Decision Tree classifier
What are Random Forests and Extremely Random Forests?
Building Random Forest and Extremely Random Forest classifiers
Estimating the confidence measure of the predictions
Dealing with class imbalance
Finding optimal training parameters using grid search
Computing relative feature importance
Predicting traffic using Extremely Random Forest regressor
Summary
Chapter 4: Detecting Patterns with Unsupervised Learning
What is unsupervised learning?
Clustering data with K—Means algorithm
Estimating the number of clusters with Mean Shift algorithm
Estimating the quality of clustering with silhouette scores
What are Gaussian Mixture Models?
Building a classifier based on Gaussian Mixture Models
Finding subgroups in stock market using Affinity Propagation model
Segmenting the market based on shopping patterns
Summary
Chapter 5: Building Recommender Systems
Creating a training pipeline
Extracting the nearest neighbors
Building a K—Nearest Neighbors classifier
Computing similarity scores
Finding similar users using collaborative frltering
Building a movie recommendation system
Summary
Chapter 6: Logic Programming
What is logic programming?
Understanding the building blocks of logic programming
Solving problems using logic programming
Installing Python packages
Matching mathematical expressions
Validating primes
Parsing a family tree
Analyzing geography
Building a puzzle solver
Summary
Chapter 7: Heuristic Search Techniques
What is heuristic search?
Uninformed versus Informed search
Constraint Satisfaction Problems
Local search techniques
Simulated Annealing
Constructing a string using greedy search
Solving a problem with constraints
SoMng the region—coloring problem
Building an 8—puzzle solver
Building a maze solver
Summary
Chapter 8:Genetic Algorithms
Understanding evolutionary and genetic algorithms
Fundamental concepts in genetic algorithms
Generating a bit pattern with predefined parameters
Visualizing the evolution
Solving the symbol regression problem
Building an intelligent robot controller
Summary
Chapter 9: Building Games With Artificial Intelligence
Using search algorithms in games
Combinatorial search
Minimax algorithm
Alpha—Beta pruning
Negamax algorithm
Installing easyAI library
Building a bat to play Last Coin Standing
Building a bot to play Tic—Tac—Toe
Building two bots to play Connect FourTM against each other
Building two bots to play Hexapawn against each other
Summary
Chapter 10: Natural Language Processing
Introduction and installation of packages
Tokenizing text data
Converting words to their base forms using stemming
Converting words to their base forms using lemmatization
Dividing text data into chunks
Extracting the frequency of terms using a Bag of Words model
Building a category predictor
Constructing a gender identifier
Building a sentiment analyzer
Topic modeling using Latent Dirichlet Allocation
Summary
Chapter 11: Probabilistic Reasoning for Sequential Data
Understanding sequential data
Handling time—series data with Pandas
Slicing time—series data
Operating on time—series data
Extracting statistics from time—series data
Generating data using Hidden Markov Models
Identifying alphabet sequences with Conditional Random Fields
Stock market analysis
Summary
Chapter 12: Building A Speech Recognizer
Working with speech signals
Visualizing audio signals
Transforming audio signals to the frequency domain
Generating audio signals
Synthesizing tones to generate music
Extracting speech features
Recognizing spoken words
Summary
Chapter 13: Object Detection and Tracking
Installing OpenCV
Frame differencing
Tracking objects using colorspaces
Object tracking using background subtraction
Building an interactive object tracker using the CAMShift algorithm
Optical flow based tracking
Face detection and tracking
Using Haar cascades for object detection
Using integral images for feature extraction
Eye detection and tracking
Summary
Chapter 14: Artificial Neural Networks
Introduction to artificial neural networks
Building a neural network
Training a neural network
Building a Perceptron based classifier
Constructing a single layer neural network
Constructing a multilayer neural network
Building a vector quantizer
Analyzing sequential data using recurrent neural networks
Visualizing characters in an Optical Character Recognition database
Building an Optical Character Recognition engine
Summary
Chapter 15: Reinforcement Learning
Understanding the premise
Reinforcement learning versus supervised learning
Real world examples of reinforcement learning
Building blocks of reinforcement learning
Creating an environment
Building a learning agent
Summary
Chapter 16: Deep Learning with Convolutional Neural Networks
What are Convolutional Neural Networks?
Architecture of CNNs
Types of layers in a CNN
Building a perceptron—based linear regressor
Building an image classifier using a single layer neural network
Building an image classifier using a Convolutional Neural Network
Summary
在现代世界中,所有一切都是由技术和数据所驱动。而人工智能与这个世界的关系正在变得愈加紧密。人工智能被广泛应用于多个领域,例如搜索引擎、图像识别、机器人学、金融等。我们会在《人工智能:Python实现(影印版 英文版)》中探索各种现实世界的真实场景,学习各种可以用于构建人工智能应用的算法。
《人工智能:Python实现(影印版 英文版)》的阅读过程中,你将学会如何就特定场景下该使用何种算法作出明智的决定。首先我们会介绍人工智能的基本知识,从中学习利用各种数据挖掘技术开发各种构建块的方法。你会看到如何实现不同的算法来得到佳的预期结果,理解如何将其应用于现实场景。如果你想为基于图像、文本、股市或其他形式数据的应用程序添加上智能层,这本激动人心的人工智能书籍绝对能够作为你的指南!我一直认为,学习一门技术,最有效的途径就是将其与我最熟悉的编程语言结合起来。《人工智能Python实现》这本书恰恰满足了我的这一需求。Python作为我日常开发中不可或缺的工具,与人工智能的结合,让我看到了无限的可能性。我希望这本书能够以一种非常直观的方式,将人工智能的核心概念,例如模式识别、数据挖掘、预测建模等,通过Python代码生动地呈现出来。我期待书中能够包含丰富的案例研究,并且这些案例能够涵盖人工智能在不同领域的应用,比如金融、医疗、交通等等,这样我才能够更全面地理解人工智能的价值和潜力。此外,我非常重视代码的可复用性和扩展性,希望这本书提供的代码不仅能够让我跑通,更能让我理解其设计思想,以便我能够根据自己的需求进行修改和扩展。作为一本影印版英文原版书,我期待它能够保留最原汁原味的学术风格和严谨的逻辑,从而帮助我更深入地理解人工智能的精髓。
评分作为一个在技术领域摸爬滚打多年的开发者,我深知理论知识与实践能力之间的鸿沟。尤其是在人工智能这样一个日新月异的领域,掌握最新的算法和工具至关重要。当我看到《人工智能Python实现》这本影印版英文原版书时,我的第一反应就是它可能就是我一直在寻找的那个能弥合鸿沟的桥梁。我并不满足于仅仅了解某个算法的名称和大概功能,我更希望能够深入理解其内在的数学原理,并且能够通过实际的代码实现来验证我的理解。这本书的“Python实现”字样让我看到了希望,这意味着我不仅仅是阅读理论,而是能够动手实践。我期待书中提供的Python代码示例能够清晰、规范,并且具有很高的可读性。我希望作者能够引导我一步步地完成从理论到代码的转化,让我能够亲身体验算法的威力。同时,作为一本英文原版书,我期望它能够提供最前沿、最准确的信息,帮助我跟上人工智能发展的最新步伐。
评分我一直觉得,学习任何一门技术,最重要的是能够建立起完整的知识体系,并且能够融会贯通。虽然我对于人工智能的某些概念已经有所涉猎,但总感觉碎片化,缺乏系统性的认识。这本书的标题《人工智能Python实现》让我看到了填补这一空白的希望。我希望这本书不仅仅是停留在某个算法的实现,而是能够从更高的层面,将人工智能的各个分支,如监督学习、无监督学习、强化学习,以及更前沿的深度学习模型,如神经网络、卷积神经网络、循环神经网络等,都能够在一个统一的框架下进行阐述。同时,我期望作者能够深入浅出地讲解每一个算法的原理,并通过Python代码的逐步引导,让我们能够清晰地看到算法的每一步是如何运作的。对我而言,能够理解算法背后的数学原理固然重要,但更重要的是能够知道如何在实际应用中运用这些算法,解决现实世界中的问题。我希望这本书的例子能够贴近实际,比如图像识别、文本分析、推荐系统等,这样我才能够更好地将所学知识应用到我的项目或者未来的工作中。
评分这本书的名字是《人工智能Python实现》影印版,作者是普拉提克·乔希,由东南大学出版社出版,ISBN是9787564173586。 作为一名对人工智能领域充满好奇的初学者,我在选择入门书籍时,非常看重其内容的实用性和代码的易懂性。尽管我还没有真正翻开这本书,但仅仅从封面和作者的背景来看,我就对它充满了期待。普拉提克·乔希这个名字在人工智能圈内并非默默无闻,他的实践经验和理论造诣是其著作质量的有力保证。我特别关注这本书的“Python实现”这几个字,因为Python作为当今最流行、最易于上手的人工智能开发语言,能够直接将理论知识转化为可运行的代码,这对我这样的实践派来说是至关重要的。我希望这本书能够带领我一步步地理解人工智能的核心概念,比如机器学习、深度学习、自然语言处理等,并且通过Python代码的演示,让这些概念不再是抽象的理论,而是能够实际操作的工具。影印版的设置也让我觉得很方便,可以直接接触到原汁原味的英文内容,这对于提升我的英文阅读能力和理解技术文档的细微差别非常有帮助。我设想这本书的排版会清晰明了,代码示例会精炼有效,注释也会详尽准确,能够帮助我解决在学习过程中遇到的各种问题。这本书能否成为我探索人工智能世界的得力助手,我非常期待。
评分我对编程的热爱由来已久,而Python更是我最得心应手的工具。因此,当我知道有这样一本将人工智能与Python深度结合的书籍时,我便毫不犹豫地将其收入囊中。《人工智能Python实现》这个名字本身就充满了吸引力,它承诺将复杂的人工智能概念通过易于理解的Python代码来呈现。我尤其期待书中对于不同算法的Python实现能够做到极致的优化和简洁。我不是那种追求“一行代码解决一切”的开发者,但我非常欣赏那些能够用最少的代码,最清晰的逻辑,去完整地表达一个算法核心思想的实现方式。我希望这本书能够做到这一点,让我在阅读代码的同时,不仅能理解算法的逻辑,还能学习到高效的Python编程技巧。而且,作为一本影印版的英文原版书,我期待它能够保留作者最原始的表达和最精确的术语,这对于深入理解人工智能的细微之处非常关键。我相信,通过这本书,我不仅能够掌握人工智能的理论知识,更能将其转化为实际可用的Python代码,从而在人工智能的广阔天地里,找到属于自己的那片天空。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有