偏微分方程-1
評分8,光滑函數的局部逼近定理、光滑函數的大範圍逼近定理、延拓定理、Sobolev空間中函數的跡、跡定理、零跡函數定理、H_0^1{Omega}空間上的函數的跡的連續依賴性。Gagliardo-Nirenberg—Sobolev 不等式。
評分4,R^n上的Lebesgue測度與Lebesgue可測集、Jordan可測集、Lebesgue—Stieltjes 測度、集閤的單調類、集閤的Sigma-可加類、單調類定理、Suslin集、Suslin運算、Suslin集。
評分書的留白較多,不建議購買
評分偏微分方程-1
評分12,作為Hilbert空間的L^2空間、L^2空間上的正交基、Bessel不等式、Riesz-Fisher定理、Chebyshev-Hermite多項式、實直綫上函數的微分、上下導數。
評分好
評分 評分2,Cauchy問題、Cauchy-Kovalevskaya定理、強函數、Cauchy-Kovalevskaya定理的證明、廣義Cauchy問題。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有