發表於2024-11-26
吳振奎數學經典係列:數學解題中的物理方法 下載 mobi pdf epub txt 電子書 格式 2024
吳振奎數學經典係列:數學解題中的物理方法 下載 mobi epub pdf 電子書哈工大齣版的圖書,以前買過,很有深度。
評分8,光滑函數的局部逼近定理、光滑函數的大範圍逼近定理、延拓定理、Sobolev空間中函數的跡、跡定理、零跡函數定理、H_0^1{Omega}空間上的函數的跡的連續依賴性。Gagliardo-Nirenberg—Sobolev 不等式。
評分6,可測函數、可測空間、Borel可測、可測函數的基本性質、幾乎處處收斂性、Egoroff定理、Cauchy函數列、Riesz定理、Luszin 定理、簡單函數的Lebesgue積分及其性質。
評分2,集代數、Sigma-代數、集類生成的Sigma-代數、可測空間、Borel集、集環、集半環、Sigma-環、Borel Sigma-代數、可加測度、可數可加測度、測度、Borel測度、概率測度、概率空間、可數可加性的判據、緊類、逼近類、具有逼近緊類的測度的可數可加性、Lebesgue測度。
評分挺好的啊!!!!!!!!
評分1,超限歸納法、遞歸原理、勢、選擇公理、集列的上極限、下極限與極限。
評分7,磨光函數、單位分解定理、廣義導數、廣義導數的唯一性、Sobolev空間、Sobolev空間的基本性質、Meyers-Serrin定理。
評分8,Lebesgue可積函數空間的完備性、Lebesgue控製收斂定理、Levi單調收斂定理、Fatou定理、可積性的判據。
評分10,Fubini定理、測度的無窮乘積、測度在映射下的像、適閤Luszin性質的映射、R^n上的變量替換。
吳振奎數學經典係列:數學解題中的物理方法 mobi epub pdf txt 電子書 格式下載 2024