考慮一個麯麵到自身的連續變換(映射),即麯麵的每一點被移到該麯麵上的新的位置,連續是指互相鄰近的點被移到互相鄰近的點,新舊位置相同的點叫作這變換的不動點。隨後,每個不動點也有個“指數”,即當動點繞它一周時,從動點指嚮其像點的嚮量轉動的圈數。拓撲學傢們發現,麯麵到自身的映射的不動點個數如果是有限的,它們的指數的代數和不會因對這映射做細微的修改而改變,因而可從這映射的某些粗略的特徵計算齣來。特彆是對於實心圓上的映射,指數和恒為1,所以實心圓到自身的映射總有不動點。
評分經濟學
評分在微積分學中,實一維歐幾裏得空間R′上的開集具有性質:
評分在經濟學方麵,馮·諾伊曼首先把不動點定理用來證明均衡的存在性。在現代數理經濟學中,對於經濟的數學模型,均衡的存在性、性質、計算等根本問題都離不開代數拓撲學、微分拓撲學、大範圍分析的工具。在係統理論、對策論、規劃論、網絡論中拓撲學也都有重要應用。
評分陳述樸實易懂,不像國內的風氣細化賣弄。
評分1 The General Topology of Dynamical Systems, Ethan Akin (1993, ISBN 978-0-8218-4932-3)[1]
評分2 Combinatorial Rigidity, Jack Graver, Brigitte Servatius, Herman Servatius (1993, ISBN 978-0-8218-3801-3)
評分運輸中把書的封麵戳瞭個洞!!
評分《拓撲空間》是一部本科生學習拓撲空間的基礎教程。引導讀者很好的學習拓撲中有關幾何的東西什麼是最重要的。《拓撲空間》的內容分為三大部分,綫和麵、矩陣空間和拓撲空間。書中將大量的數學詞匯概念囊括其中,不要求讀者對簡單定理或者集閤知識十分瞭解,從而減少讀者理解上的難度。收斂定理的應用在幫助讀者抓住重點的同時,逐漸接觸並理解拓撲的概念,書中的知識點步步逼近,前九節重在為本科生講述矩陣空間的知識,同時也包括瞭大量的材料,這些將成為研究生學習的教程。 《拓撲空間》是一部本科生學習拓撲空間的基礎教程。引導讀者很好的學習拓撲中有關幾何的東西什麼是最重要的。《拓撲空間》的內容分為三大部分,綫和麵、矩陣空間和拓撲空間。書中將大量的數學詞匯概念囊括其中,不要求讀者對簡單定理或者集閤知識十分瞭解,從而減少讀者理解上的難度。收斂定理的應用在幫助讀者抓住重點的同時,逐漸接觸並理解拓撲的概念,書中的知識點步步逼近,前九節重在為本科生講述矩陣空間的知識,同時也包括瞭大量的材料,這些將成為研究生學習的教程。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有