数理逻辑(第2版) [Mathematical Logic]

数理逻辑(第2版) [Mathematical Logic] pdf epub mobi txt 电子书 下载 2025

[德] 艾宾浩斯 著
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787506292276
版次:1
商品编码:10096474
包装:平装
外文名称:Mathematical Logic
开本:24开
出版时间:2008-05-01
用纸:胶版纸
页数:289
正文语种:英语

具体描述

编辑推荐

  A short digression into model theory will help us to analyze the expressive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this di~culty can be overcome——-even in the framework of first-order logic——by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.
  Godels incompleteness theorems are presented in connection with several related results (such as Trahtenbrots theorem) which all exemplify the limitatious of machine-oriented proof methods. The notions of computability theory that are relevant to this discussion are given in detail. The concept of computability is made precise by means of the register machine as a

内容简介

  What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathematical proofs?
  Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godels completeness theorem, which shows that the consequence relation coincides with formal provability: By means of a calculus consisting of simple formal inference rules, one can obtain all consequences of a given axiom system (and in particular, imitate all mathematical proofs)

内页插图

目录

Preface
PART A
ⅠIntroduction
1.An Example from Group Theory
2.An Example from the Theory of Equivalence Relations
3.A Preliminary Analysis
4.Preview
Ⅱ Syntax of First-Order Languages
1.Alphabets
2.The Alphabet of a First-Order Language
3.Terms and Formulas in First-Order Languages
4.Induction in the Calculus of Terms and in the Calculus of Formulas
5.Free Variables and Sentences
Ⅲ Semantics of First-Order Languages
1.Structures and Interpretations
2.Standardization of Connectives
3.The Satisfaction Relation
4.The Consequence Relation
5.Two Lemmas on the Satisfaction Relation
6.Some simple formalizations
7.Some remarks on Formalizability
8.Substitution
Ⅳ A Sequent Calculus
1.Sequent Rules
2.Structural Rules and Connective Rules
3.Derivable Connective Rules
4.Quantifier and Equality Rules
5.Further Derivable Rules and Sequents
6.Summary and Example
7.Consistency
ⅤThe Completeness Theorem
1.Henkin’S Theorem.
2. Satisfiability of Consistent Sets of Formulas(the Countable Casel
3. Satisfiability of Consistent Sets of Formulas(the General Case)
4.The Completeness Theorem
Ⅵ The LSwenheim-Skolem and the Compactness Theorem
1.The L6wenheim-Skolem Theorem.
2.The Compactness Theorem
3.Elementary Classes
4.Elementarily Equivalent Structures
Ⅶ The Scope of First-Order Logic
1.The Notion of Formal Proof
2.Mathematics Within the Framework of Fimt—Order Logic
3.The Zermelo-Fraenkel Axioms for Set Theory.
4.Set Theory as a Basis for Mathematics
Ⅷ Syntactic Interpretations and Normal Forms
1.Term-Reduced Formulas and Relational Symbol Sets
2.Syntactic Interpretations
3.Extensions by Definitions
4.Normal Forms
PART B
Ⅸ Extensions of First-order logic
Ⅹ Limitations of the Formal Method
Ⅺ Free Models and Logic Programming
Ⅻ An Algebraic Characterization of Elementary Equivalence
ⅩⅢ Lindstrom’s Theorems
References
Symbol Index
Subject Index

前言/序言



用户评价

评分

东西好

评分

质量非常好,内容很好,一直信赖京东

评分

Gooooooooooooooooooooooood

评分

Gooooooooooooooooooooooood

评分

经典教材很喜欢,英文影印版,很清晰

评分

命题演算是研究关于命题如何通过一些逻辑连接词构成更复杂的命题以及逻辑推理的方法。命题是指具有具体意义的又能判断它是真还是假的句子。 如果我们把命题看作运算的对象,如同代数中的数字、字母或代数式,而把逻辑连接词看作运算符号,就象代数中的“加、减、乘、除”那样,那么由简单命题组成复和命题的过程,就可以当作逻辑运算的过程,也就是命题的演算。

评分

3后面则是设计递归论,模型论,证明论等内容。

评分

Springer的书必属经典

评分

十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《数论的基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。 数理逻辑包括哪些内容呢?这里我们先介绍它的两个最基本的也是最重要的组成部分,就是“命题演算”和“谓词演算”。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有