内容简介
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
内页插图
目录
Preface
Part I-Algebraic Methods
ChapterI Finite fields
1-Generalities
2-Equations over a finite field
3-Quadratic reciprocity law
Appendix-Another proof of the quadratic reciprocity law
Chapter II p-adic fields
1-The ring Zp and the field
2-p-adic equations
3-The multiplicative group of
Chapter II nHilbert symbol
1-Local properties
2-Global properties
Chapter IV Quadratic forms over Qp and over Q
1-Quadratic forms
2-Quadratic forms over Q
3-Quadratic forms over Q
Appendix Sums of three squares
Chapter V Integral quadratic forms with discriminant
1-Preliminaries
2-Statement of results
3-Proofs
Part II-Analytic Methods
Chapter VI-The theorem on arithmetic progressions
1-Characters of finite abelian groups
2-Dirichlet series
3-Zeta function and L functions
4-Density and Dirichlet theorem
Chapter Vll-Modular forms
1-The modular group
2-Modular functions
3-The space of modular forms
4-Expansions at infinity
5-Hecke operators
6-Theta functions
Bibliography
Index of Definitions
Index of Notations
前言/序言
This book is divided into two parts.
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
The two parts correspond to lectures given in 1962 and 1964 to secondyear students at the Ecole Normale Superieure. A redaction of these lecturesin the form of duplicated notes, was made by J.-J. Saosuc (Chapters l-IV)and J.-P. Ramis and G. Ruget (Chapters VI-VIi). They were very useful tome; I extend here my gratitude to their authors.
算术教程(英文版) [A Course in Arithmetic] 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
读者有一定的基本同调代数和代数拓扑知识就可以理解本书。每章末都附有练习,这些可以帮助学生更好的理解书中的知识体系。附录给出了部分习题的解答。第二版中在内容上做了较大的改动,增加了80多例子和大量更深层次的内容,如,Cech上同调、Oliver变换、插值理论、广义流形、局部齐性空间、同调纤维和p进变换群。目次:层和准层;层上同调;与其他上同调定理的比较;谱序列的应用;Borel-Moore同调;上层和ech同调。
评分
☆☆☆☆☆
开卷有益处,不忘送书人
评分
☆☆☆☆☆
自然数或正整数的数学理论就是众所周知的算术.至于几何、 代数等许多数学分支学科的名称,都是后来很晚的时候才有的。
评分
☆☆☆☆☆
读者有一定的基本同调代数和代数拓扑知识就可以理解本书。每章末都附有练习,这些可以帮助学生更好的理解书中的知识体系。附录给出了部分习题的解答。第二版中在内容上做了较大的改动,增加了80多例子和大量更深层次的内容,如,Cech上同调、Oliver变换、插值理论、广义流形、局部齐性空间、同调纤维和p进变换群。目次:层和准层;层上同调;与其他上同调定理的比较;谱序列的应用;Borel-Moore同调;上层和ech同调。
评分
☆☆☆☆☆
短小精悍,名家经典。
评分
☆☆☆☆☆
不够详细,不够完善,不够变化。
评分
☆☆☆☆☆
1+2=2+1
评分
☆☆☆☆☆
书很薄但内容多少都讲到了,很不错
评分
☆☆☆☆☆
最后一本拿的 外面全是灰 脏兮兮的 书本身内容当然还是很好的