内容简介
代数K理论在代数拓扑、数论、代数几何和算子理论等现代数学各个领域中的作用越来越大。这门学科的广泛性往往使人感觉望而生畏。《代数K理论及其应用》以1990年秋天Maryland大学讲义为基础,不仅为数学领域研究生提供很好的学习代数K理论的基本知识,也讲述其在各个领域的应用。全书结构完整,了解代数基础知识、基本代数拓扑和几何拓扑知识就可以完全读懂这《代数K理论及其应用》。该书也涉及到不少代数拓扑、拓扑代数和代数数论的知识。最后一章简明地介绍了循环同调以及其与K理论的关系。目次:环的K0群;环的K1群;范畴的K0、K1群,MilnorK2群;QuillenK理论和+-结构;循环同调及其与K理论的关系。
读者对象:数学系高年级学生及研究生的教材,也可供高校数学教师及数学研究人员阅读或参考。
目录
Preface
Chapter 1. Ko of Rings
1. Defining K0
2. Ko from idempotents
3. Ko of PIDs and local rings
4. Ko of Dedekind domains
5. Relative Ko and excision
6. An application: Swans Theorem and topological K- theory
7. Another application: Euler characteristics and the Wall finiteness obstruction
Chapter 2. K1 of Rings
1. Defining K1
2. K1 of division rings and local rings
3. K1 of PIDs and Dedekind domains
4. Whitehead groups and Whitehead torsion
5. Relative K1 and the exact sequence
Chapter 3. Ko and K1 of Categories, Negative K-Theory
1. Ko and K1 of categories, Go and G1 of rings
2. The Grothendieck and Bass-Heller-Swan Theorems
3. Negative K-theory
Chapter 4. Milnors K2
1. Universal central extensions and H2
Universal central extensions
Homology of groups
2. The Steinberg group
3. Milnors K2
4. Applications of K2
Computing certain relative K1 groups
K2 of fields and number theory
Almost commuting operators
Pseudo-isotopy
Chapter 5. The +-Construction and Quillen K-Theory
1. An introduction to classifying spaces
2. Quillens +-construction and its basic properties
3. A survey of higher K-theory
Products
K-theory of fields and of rings of integers
The Q-construction and results proved with it
Applications
Chapter 6. Cyclic homology and its relation to K-Theory
1. Basics of cyclic homology
Hochschild homology
Cyclic homology
Connections with “non-commutative de Rhom theory”
2. The Chern character
The classical Chern character
The Chern character on Ko
The Chern character on higher K-theory
3. Some applications
Non-vanishing of class groups and Whitehead groups
Idempotents in C*-algebras
Group rings and assembly maps
References
Books and Monographs on Related Areas of Algebra,Analysis, Number Theory, and Topology
Books and Monographs on Algebraic K-Theory
Specialized References
Notational Index
Subject Index
前言/序言
代数K理论及其应用 [Algebraic K-Theory and Its Applications] 下载 mobi epub pdf txt 电子书 格式
代数K理论及其应用 [Algebraic K-Theory and Its Applications] 下载 mobi pdf epub txt 电子书 格式 2024
代数K理论及其应用 [Algebraic K-Theory and Its Applications] 下载 mobi epub pdf 电子书
代数K理论及其应用 [Algebraic K-Theory and Its Applications] mobi epub pdf txt 电子书 格式下载 2024