在拓扑学中,我们对向量丛有类似的和构造。迈克尔·阿蒂亚与弗里德里希·希策布鲁赫(Friedrich Hirzebruch)在1959年使用格罗腾迪格群构造来定义拓扑空间 的 (两个构造一致)。这是在代数拓扑中发现的第一个奇异上同调理论的基础。它在指标定理的第二证明中起了巨大的作用。此外,这种途径导向了 C*-代数的非交换 -理论。
评分这个课题最早由亚历山大·格罗滕迪克1957年发现,名字取自德文“Klasse”,意为“分类”class ,进而表述为格罗滕迪克-黎曼-罗赫定理[1]。格罗腾迪格需要在代数簇 X 的层上工作。不是直接在处理层,他给出了两个构造。首先,他利用直和运算将层的交换幺半群转换成一个群 通过取层的分类的形式和以及形式加法逆(这是得到给定函子左伴随的明确方法)。在第二个构造中,他强加以与层扩张一致的额外关系,得到一个现在记作 的群。这两个构造都被称为格罗腾迪克群; 具有上同调表现而 有同调表现。
评分介绍代数k理论的很好的一本书,以前还没看过
评分joli
评分很好,就像京东是个好网站一样
评分书一般,上来就是专业名词,一点过渡都没有!
评分代数K理论及其应用,正版。
评分如果 是一个光滑簇,两个群是相同的。
评分在拓扑学中,我们对向量丛有类似的和构造。迈克尔·阿蒂亚与弗里德里希·希策布鲁赫(Friedrich Hirzebruch)在1959年使用格罗腾迪格群构造来定义拓扑空间 的 (两个构造一致)。这是在代数拓扑中发现的第一个奇异上同调理论的基础。它在指标定理的第二证明中起了巨大的作用。此外,这种途径导向了 C*-代数的非交换 -理论。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有