黎曼-芬斯勒几何基础

黎曼-芬斯勒几何基础 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
莫小欢 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-20

图书介绍


出版社: 北京大学出版社
ISBN:9787301107966
版次:1
商品编码:10557982
包装:平装
出版时间:2007-03-01
用纸:胶版纸
页数:214
字数:200000


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

《黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。《黎曼·芬斯勒几何基础》每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。
《黎曼·芬斯勒几何基础》可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可供科研院所从事数学和物理学等相关学科科研人员阅读。

作者简介

莫小欢,北京大学数学科学学院教授,博士生导师。 1991年在杭州大学获得博士学位,长期从事几何学的研究工作和教学工作,研究项目“芬斯勒流形的几何与调和映射”获2002年教育部提名国家自然科学奖一等奖,负责的几何学及其习题课程被评为2005年北京市精品课。

目录

第一章 芬斯勒流形
§1.1 历史回顾
§1.2 芬斯勒流形
§1.3 基本例子
1.3.1 黎曼流形
1.3.2 闵可夫斯基流形
1.3.3 Randers流形
§1.4 基本不变量
1.4.1 基本张量
1.4.2 希尔伯特形式
§1.5 对称芬斯勒结构
习题一

第二章 闵可夫斯基空间上的几何量
§2.1 嘉当张量
§2.2 嘉当形式和Deicke定理
§2.3 畸变
§2.4 芬斯勒子流形
§2.5 子流形的嵌入问题
习题二

第三章 陈联络
§3.1 芬斯勒丛上的适当标架场
§3.2 陈联络的构造
§3.3 陈联络的性质
§3.4 SM的水平子丛和垂直子丛
习题三

第四章 共变微分和第二类几何量
§4.1 水平共变导数和垂直共变导数
§4.2 沿着测地线的共变导数
§4.3 Landsberg曲率
§4.4 S曲率
习题四

第五章 黎曼几何不变量和弧长的变分
§5.1 陈联络的曲率
§5.2 旗曲率
§5.3 弧长的第一变分
§5.4 弧长的第二变分
习题五

第六章 射影球丛的几何
§6.1 射影球丛的联络和曲率
§6.2 芬斯勒丛的可积条件
§6.3 芬斯勒丛的极小性
习题六

第七章 三类几何不变量的内蕴联系
§7.1 嘉当张量和旗曲率的关系
§7.2 里奇恒等式
§7.3 S曲率和旗曲率的关系
§7.4 具有常S曲率的芬斯勒流形
习题七

第八章 具有标量曲率的芬斯勒流形
§8.1 具有迷向S曲率的芬斯勒流形
§8.2 具有标量曲率的芬斯勒流形的基本方程
§8.3 具有相对迷向平均Landsberg曲率的度量
习题八

第九章 从芬斯勒流形出发的调和映射

第十章 局部射影平坦和非局部射影平坦的芬斯勒度量
习题解答和提示
参考文献
索引

前言/序言







黎曼-芬斯勒几何基础 下载 mobi epub pdf txt 电子书 格式

黎曼-芬斯勒几何基础 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

黎曼-芬斯勒几何基础 下载 mobi pdf epub txt 电子书 格式 2025

黎曼-芬斯勒几何基础 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

很好,不错哦、、、

评分

应该还不错应该还不错

评分

  Chern和Bao在1996年成功的把这个公式推广到indcatrix为常数的所有Finsler流形上,从而对于所有Landsberg空间,这个公式成立。不过非平凡的Landsberg空间是很少的,这方面的结果可以参考Bao,Chern和Shen 1997年关于Finsler曲面刚性的工作。对于任意Finsler流形上Gauss-Bonnet公式的证明已经在2002年由Lackey圆满完成。很遗憾的是,对于Finsler流形,这个公式并不能看做Atiyah-Singer指标定理的特例(这里假设Atiyah-Singer的定理能被推广到紧致Finsler流形上),因为Finsler流形上不存在自伴的椭圆微分算子,我们已经知道这一点。不过,Bao和Lackey合作,在1996年证明了Hodge分解定理,这个工作的重要性是不言而喻的。

评分

《黎曼·芬斯勒几何基础》可作为综合性大学、师范院校数学系与物理黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。《黎曼·芬斯勒几何基础》每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。

评分

《黎曼·芬斯勒几何基础》可作为综合性大学、师范院校数学系与物理黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。《黎曼·芬斯勒几何基础》每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。

评分

应该还不错应该还不错

评分

好!

评分

《黎曼·芬斯勒几何基础》可作为综合性大学、师范院校数学系与物理黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。《黎曼·芬斯勒几何基础》每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。

评分

  由于Chern在做1948年的工作时,Cartan的活动标架法并不通行,尤其是对于无知的Finsler几何学家,这些人只能在偏僻之处做点小工作,甚至对于正在呼风唤雨的Chern-Weil理论都一无所知,所以Chern的这篇文章长期以来并不被人了解。Rund在1961年重新发现了Chern定义过的联络,由于Rund的无知,这个用矢量场来定义的联络和Chern的联络的等价性并未被发现。在Anastasiei 1996年的一篇注记中,这种等价性首先被揭示出来,现在这种联络叫作Chern-Rund联络。尽管Chern首先发现了它,这个叫法是有好处的,因为可以和复几何上的Chern联络相区分。在这本书里这种联络依然被称为Chern联络,我想这源于其他两个作者的无知。

类似图书 点击查看全场最低价

黎曼-芬斯勒几何基础 mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有