平方和

平方和 pdf epub mobi txt 电子书 下载 2025

冯克勤 著
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 哈尔滨工业大学出版社
ISBN:9787560332192
版次:1
商品编码:10777779
包装:平装
丛书名: 数论经典著作系列
开本:16开
出版时间:2011-03-01
用纸:胶版纸
页数:99

具体描述

编辑推荐

   本系列丛书搜集的是世界各国各历史时期的初等数学经典。大多兼有数学教育史史料研究及弥补当前初等数学教材不系统、缺深度、少背景介绍等缺陷之功能。冯克勤所著的《平方和》为其中一册,共分四章及附录:《数论经典著作系列:平方和》介绍有关代数数论的几段很不简单的数学史,以及数学思想和解题方法。

内容简介

   《平方和》共分四章及附录:第一章整数平方和——能表示吗?第二章再谈整数平方和——有多少种表示法?第三章-1是平方和吗?第四章多项式平方和。《平方和》适合于高等院校师生及相关专业研究人员、数学奥林匹克竞赛选手和教练员以及数学爱好者。

作者简介

冯克勤,1941年生,1968年研究生毕业于中国科学技术大学数学系;1973年至2000年在中国科学技术大学数学系和研究生院任教,2000年后到清华大学数学系工作。
主要从事代数数论和代数编码理论研究,出版了《分圆函数域》、《代数数论简史》等专著,《整数与多项式》、《交换代数基础》、《代数数论》、《代数与通信》等大学生和研究生教材:主编的《走向数学》丛书曾获中国图书奖。

目录

第一章 整数平方和——能表示吗?
1.1 二平方和——高斯定理
1.2 四平方和——兼谈域和四元数体
1.3 二元二次型
1.4 三平方和

第二章 再谈整数平方和——有多少种表示法?
2.1 θ,q0,q1,q2和q3
2.2 雅可比恒等式
2.3 r2(n)计算公式
2.4 r4(n)计算公式
2.5 再证r2(n)公式——兼谈高斯整数环
幕间休息——漫谈代数数论

第三章 -1是平方和吗?
3.1 -1就是一切
3.2 全正元素是平方和
3.3 -1是几个数的平方和——虚二次域情形
3.4 s(F)=2n(费斯特定理)

第四章 多项式平方和
4.1 历史的回顾
4.2 多项式平方和——肯定性和否定性结果
4.3 构作s(F)=2k的域
4.4 进一步的结果和未解决的问题
附录 一点初等数论
编辑手记

前言/序言


用户评价

评分

通俗易懂,深入浅出介绍了数论里的经典问题.

评分

评分

给力,给力,给力,给力,给力,给力,给力,给力,给力,给力

评分

挺好看的一本书挺好看的一本书

评分

好书 值得一看 仔细品读吧 很满意

评分

很好的专业书,值得一读

评分

7,Lebesgue积分的一般定义、Lebesgue积分的基本性质、Chebyshev不等式、具有无限测度的空间上的积分。

评分

4,Laplace方程Cauchy问题可解性的充要条件、调和函数族的紧性定理、Newton势、单层势、双层势、对数势、亚椭圆算子、Newton势的密度、Lyapunov曲面。1,超限归纳法、递归原理、势、选择公理、集列的上极限、下极限与极限。

评分

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有