内容简介
《高等数学(第5版)(上册)》这次修订更好地与中学数学教学相衔接,适当引用了一些数学记号和逻辑符号,增加了应用性例题和习题,对一些内容作了适当的精简和合并。修改较多的部分涉及函数、极限及向量代数等内容。
《高等数学(第5版)(上册)》分上、下两册出版。上册内容为函数与极限、导数与微分、中值定理与导数的应用、不定积分、定积分、定积分的应用、空间解析几何与向量代数等七章,书末还附有二、三阶行列式简介:几种常用的曲线、积分表、习题答案与提示。
《高等数学(第5版)(上册)》仍保持了第四版结构严谨、逻辑清晰、叙述详细、通俗易懂、例题较多、便于自学等优点,又在保证教学基本要求的前提下,扩大了适应面,增强了伸缩性,供高等院校工科类专业的学生使用。
内页插图
目录
第一章 函数与极限
第一节 映射与函数
一、集合(1)二、映射(5)三、函数(7)习题1-1(20)
第二节 数列的极限
一、数列极限的定义(23)二、收敛数列的性质(27)
习题1—2(30)
第三节 函数的极限
一、函数极限的定义(31)二、函数极限的性质(36)
习题1-3(37)
第四节 无穷小与无穷大
一、无穷小(38)二、无穷大(39)习题1-4(41)
第五节 极限运算法则
习题1-5(48)
第六节 极限存在准则两个重要极限
习题1-6(55)
第七节 无穷小的比较
习题1-7(59)
第八节 函数的连续性与间断点
一、函数的连续性(59)二、函数的间断点(62)习题1-8(64)
第九节 连续函数的运算与初等函数的连续性
一、连续函数的和、差、积、商的连续性(65)二、反函数与复合函数的连续性(65)三、初等函数的连续性(67)习题1-9(68)
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理(69)二、零点定理与价值定理(70)
三、一致连续性(72)习题1-10(73)
总习题
第二章 导数与微分
第一节 导数概念
一、引例(76)二、导数的定义(78)三、导数的几何意义(82)四、函数可导性与连续性的关系(84)习题2-1(85)
第二节 函数的求导法则
一、函数的和、差、积、商的求导法则(86)二、反函数的求导法则(89)
三、复合函数的求导法则(91)四、基本求导法则与导数公式(93)
习题2-2(96)
第三节 高阶导数
习题2-3(101)
第四节 隐函数及由参数方程所确定的函数的导数相关变化率
一、隐函数的导数(102)二、由参数方程所确定的函数的导数(106)
三、相关变化率(110)习题2-4(110)
第五节 函数的微分
一、微分的定义(112)二、微分的几何意义(114)三、基本初等函数篚
微分公式与微分运算法则(115)四、微分在近似计算中的应用(118)
习题2-5(122)
总习题二
第三章 微分中值定理与导数的应用
第一节 微分中值定理
一、罗尔定理(126)二、拉格朗日中值定理(127)三、柯西中值定理(130)
习题3-l(132)
第二节 洛必达法则
习题3-2(137)
第三节 泰勒公式
习题3-3(143)
第四节 函数的单调性与曲线的凹凸性
一、函数单调性的判定法(143)二、曲线的凹凸性与拐点(147)
习题3-4(151)
第五节 函数的极值与最大值最小值
一、函数的极值及其求法(152)二、最大值最小值问题(156)
习题3-S(160)
第六节 函数图形的描绘
习题3-6(166)
第七节 曲率
一、弧微分(167)二、曲率及其计算公式(168)三、曲率圆与曲率
半径(171)。四、曲率中心的计算公式渐屈线与渐伸线(173)
习题3-7(175)
第八节 方程的近似解
一、二分法(176)二、切线法(178)习题3-8(180)
总习题三
第四章 不定积分
第一节 不定积分的概念与性质
一、原函数与不定积分的概念(182)二、基本积分表(186)三、不定积
分的性质(187)习题4-1(190)
第二节 换元积分法
一、第一类换元法(191)二、第二类换元法(198)习题4-2(204)
第三节 分部积分法
习题4-3(210)
第四节 有理函数的积分
一、有理函数的积分(211)二、可化为有理函数的积分举例(216)
习题4-4(218)
第五节 积分表的使用
习题4-5(221)
总习题四
第五章 定积分:
第一节 定积分的概念与性质
一、定积分问题举例(223)一二、定积分定义(225)三、定积分的性质(229)
习题5-1(233)
第二节 微积分基本公式
一、变速直线运动中位置函数与速度函数之间的联系(234)二、积分上限的函数及其导数(235)三、牛顿一莱布尼茨公式(236)习题5-2(240)
第三节 定积分的换元法和分部积分法
一、定积分的换元法(242)二、定积分的分部积分法(247)习题5-3(249)
第四节 反常积分
一、无穷限的反常积分(250)二、无界函数的反常积分(253)
习题5-4(256)
第五节 反常积分的审敛法r函数
一、无穷限反常积分的审敛法(256)二、无界函数的反常积分的审敛法(260)
三、r函数(261)习题5-5(263)
总习题五
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
一、平面图形的面积(269)二、体积(273)三、平面曲线的弧长(276)
习题6-2(279)
第三节 定积分在物理学上的应用
一、变力沿直线所作的功(282)二、水压力(285)三、引力(286)
习题6-3(287)
总习题六
第七章 空间解析几何与向量代数
第一节 向量及其线性运算
一、向量概念(289)二、向量的线性运算(290)三、空间直角坐标系(294)四、利用坐标作向量的线性运算(295)五、向量的模、方向角、投影(297)
习题7-1(300)
第二节 数量积向量积。混合积
一、两向量的数量积(301)二、两向量的向量积(305)。三、向量的混合积(308)
习题7-2(309)
第三节 曲面及其方程
一、曲面方程的概念(310)二、旋转曲面(312)三、柱面(314)四、二次曲面(315)习题7-3(318)
第四节 空间曲线及其方程
一、空间曲线的一般方程(319)二、空间瞳线的参数方程(320)三、空间曲线在坐标面上的投影(323)习题7-4(324)
第五节 平面及其方程
一、平面的点法式方程(325)二、平面的一般方程(326)三、两平面的夹角(328)习题7-5(329)
第六节 空间直线及其方程
一、空间直线盼一般方程(330)二、空间直线的对称式方程与参数方、程(330)三、两直线的夹角(332)四、直线与平面的夹角(333)
五、杂例(333)习题7-6(335)
总习题七
附录I 二阶和三阶行列式简介
附录Ⅱ 几种常用的曲线
附录Ⅲ 积分表
习题答案与提示
前言/序言
本书分上、下两册。上册包括一元函数微积分学、空间解析几何与向量代数,下册包括多元函数微积分学、级数、微分方程、线性代数和概率论。各章配有习题,书末附有习题答案。
本书可作为高等学校工科高等数学课程的试用教材或教学参考书。
参加本书编写工作的有同济大学王福楹、王福保、蔡森甫、邱伯驺,上海交通大学王嘉善,上海纺织工学院巫锡禾,上海科技大学蔡天亮,上海机械学院王敦珊、周继高,上海铁道学院李鸿祥等同志。
本书由上海海运学院陆子芬教授主审。参加审稿的还有大连工学院刘锡琛,合肥工业大学万迪生、何继文,成都电讯工程学院冯潮清,西北工业大学王德如,浙江大学盛骤、孙玉麟,太原工学院徐永源、张宝玉,上海海运学院朱幼文、卢启兴等同志。
审稿同志都认真审阅了原稿,并提出了不少改进意见,对此我们表示衷心感谢。
限于编者水平,同时编写时间也比较仓促,因而教材中一定存在不妥之处,希望广大读者提出批评和指正。
普通高等教育“十五”国家级规划教材:高等数学(第5版)(上册) 下载 mobi epub pdf txt 电子书 格式