7,Lebesgue積分的一般定義、Lebesgue積分的基本性質、Chebyshev不等式、具有無限測度的空間上的積分。
評分4,二階綫性偏微分方程標準型的存在性、二階綫性偏微分方程的分類、偏微分方程問題提法的適定性、反射法、依賴區域、決定區域、影響區域、特徵錐、能量不等式、波動方程Cauchy問題解的唯一性。
評分5,Caratheodory外測度、正則外測度、任意Borel集m-可測的充要條件。
評分3,特徵流形、特徵方程、Holmgren定理、Carleman定理、化二階綫性偏微分方程為標準型。
評分3,特徵流形、特徵方程、Holmgren定理、Carleman定理、化二階綫性偏微分方程為標準型。
評分12,作為Hilbert空間的L^2空間、L^2空間上的正交基、Bessel不等式、Riesz-Fisher定理、Chebyshev-Hermite多項式、實直綫上函數的微分、上下導數。
評分6,可測函數、可測空間、Borel可測、可測函數的基本性質、幾乎處處收斂性、Egoroff定理、Cauchy函數列、Riesz定理、Luszin 定理、簡單函數的Lebesgue積分及其性質。
評分9, Lebesgue積分與Riemann積分的關係、符號測度、符號測度的Hahn分解與Jordan分解、Radon-Nikodym定理、測度空間的乘積。
評分4,二階綫性偏微分方程標準型的存在性、二階綫性偏微分方程的分類、偏微分方程問題提法的適定性、反射法、依賴區域、決定區域、影響區域、特徵錐、能量不等式、波動方程Cauchy問題解的唯一性。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有