2,Cauchy問題、Cauchy-Kovalevskaya定理、強函數、Cauchy-Kovalevskaya定理的證明、廣義Cauchy問題。
評分12,作為Hilbert空間的L^2空間、L^2空間上的正交基、Bessel不等式、Riesz-Fisher定理、Chebyshev-Hermite多項式、實直綫上函數的微分、上下導數。
評分3,特徵流形、特徵方程、Holmgren定理、Carleman定理、化二階綫性偏微分方程為標準型。
評分2,集代數、Sigma-代數、集類生成的Sigma-代數、可測空間、Borel集、集環、集半環、Sigma-環、Borel Sigma-代數、可加測度、可數可加測度、測度、Borel測度、概率測度、概率空間、可數可加性的判據、緊類、逼近類、具有逼近緊類的測度的可數可加性、Lebesgue測度。
評分好
評分7,磨光函數、單位分解定理、廣義導數、廣義導數的唯一性、Sobolev空間、Sobolev空間的基本性質、Meyers-Serrin定理。
評分挺好的啊!!!!!!!!
評分哈工大齣版的圖書,以前買過,很有深度。
評分4,R^n上的Lebesgue測度與Lebesgue可測集、Jordan可測集、Lebesgue—Stieltjes 測度、集閤的單調類、集閤的Sigma-可加類、單調類定理、Suslin集、Suslin運算、Suslin集。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有