內容簡介
分析學包括微分學與積分學。在幾何中,也有對應的微分幾何和積分幾何。《微分幾何與積分幾何(英文版)》介紹幾何的這兩個方麵,包含四部分。第一部分內容是1971年陳省身在國際數學傢大會上所做的一小時報告,嚮學生和非專傢介紹微分幾何當時的整體麵貌。作者首先簡要介紹曆史概況,概述瞭一些基本概念和工具,並介紹瞭當時微分幾何的五個分支:正麯率流形、麯率和歐拉特徵、小子流形、等距映射、全純映射。第二部分係統地介紹瞭積分幾何。第三部分為微分流形,是作者在1959年微分幾何正成為數學的一個主要領域時所寫的講義,該講義給齣瞭微分流形和微分幾何的平穩和快速的引入,給當時的數學界送來一股清新之風。第四部分為微分幾何,提供瞭一個高效但通俗易懂的介紹,並給齣瞭對整個數學的全局的觀點。《微分幾何與積分幾何(英文版)》不僅對初學者非常有價值,對科研工作者也是很好的補充閱讀材料。
目錄
Part Ⅰ What is Geometry and Differential Geometry
1 What Is Geometry?
1.1 Geometry as a logical system; Euclid
1.2 Coordinatization of space; Descartes
1.3 Space based on the group concept; Klein's Erlanger Programm
1.4 Localization of geometry; Gauss and Riemann
1.5 Globalization; topology
1.6 Connections in a fiber bundle; Elie Cartan
1.7 An application to biology
1.8 Conclusion
2 Differential Geometry; Its Past and Its Future
2.1 Introduction
2.2 The development of some fundamental notions and tools
2.3 Formulation of some problems with discussion of related results
2.3.1 Riemannian manifolds whose sectional curvatures keep a constant sign
2.3.2 Euler-Poincare characteristic
2.3.3 Minimal submanifolds
2.3.4 Isometric mappings
2.3.5 Holomorphic mappings
Part Ⅱ Lectures on Integral Geometry
3 Lectures on Integral Geometry
3.1 Lecture Ⅰ
3.1.1 Buffon's needle problem
3.1.2 Bertrand's parabox
3.2 Lecture Ⅱ
3.3 Lecture Ⅲ
3.4 Lecture Ⅳ
3.5 Lecture Ⅴ
3.6 Lecture Ⅵ
3.7 Lecture Ⅶ
3.8 Lecture Ⅷ
Part Ⅲ Differentiable Manifolds
4 Multilinear Algebra
4.1 The tensor (or Kronecker) product
4.2 Tensor spaces
4.3 Symmetry and skew-symmetry; Exterior algebra
4.4 Duality in exterior algebra
4.5 Inner product
5 Differentiable Manifolds
5.1 Definition of a differentiable manifold
5.2 Tangent space
5.3 Tensor bundles
5.4 Submanifolds; Imbedding of compact manifolds
6 Exterior Differential Forms
6.1 Exterior differentiation
6.2 Differential systems; Frobenius's theorem
6.3 Derivations and anti-derivations
6.4 Infinitesimal transformation
6.5 Integration of differential forms
6.6 Formula of Stokes
7 Affine Connections
7.1 Definition of an affine connection: covariant differential
7.2 The principal bundle
7.3 Groups of holonomy
7.4 Affine normal coordinates
8 Riemannian Manifolds
8.1 The parallelism of Levi-Civita
8.2 Sectional curvature
8.3 Normal coordinates; Existence of convex neighbourhoods
8.4 Gauss-Bonnet formula
8.5 Completeness
8.6 Manifolds of constant curvature
Part Ⅳ Lecture Notes on Differentiable Geometry
9 Review of Surface Theory
9.1 Introduction
9.2 Moving frames
9.3 The connection form
9.4 The complex structure
10 Minimal Surfaces
10.1 General theorems
10.2 Examples
10.3 Bernstein -Osserman theorem
10.4 Inequality on Gaussian curvature
11 Pseudospherical Surface
11.1 General theorems
11.2 Baicklund's theorem
微分幾何與積分幾何(英文版) 下載 mobi epub pdf txt 電子書 格式