包郵 Python與機器學習實戰+深入淺齣深度學習+TensorFlow技術解析與實戰

包郵 Python與機器學習實戰+深入淺齣深度學習+TensorFlow技術解析與實戰 pdf epub mobi txt 電子書 下載 2025

圖書標籤:
  • Python
  • 機器學習
  • 深度學習
  • TensorFlow
  • 實戰
  • 數據科學
  • 人工智能
  • 算法
  • 編程
  • 包郵
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 曠氏文豪圖書專營店
齣版社: 電子工業齣版社
ISBN:9787121317200
商品編碼:13640883688

具體描述

YL7938  9787121317200 9787115456137 9787121312700

 Python與機器學習實戰

Python與機器學習這一話題是如此的寬廣,僅靠一本書自然不可能涵蓋到方方麵麵,甚至即使齣一個係列也難能做到這點。單就機器學習而言,其領域就包括但不限於如下:有監督學習(Supervised Learning),無監督學習(Unsupervised Learning)和半監督學習(Semi-Supervised Learning)。而具體的問題又大緻可以分兩類:分類問題(Classification)和迴歸問題(Regression)。
Python本身帶有許多機器學習的第三方庫,但本書在絕大多數情況下隻會用到Numpy這個基礎的科學計算庫來進行算法代碼的實現。這樣做的目的是希望讀者能夠從實現的過程中更好地理解機器學習算法的細節,以及瞭解Numpy的各種應用。不過作為補充,本書會在適當的時候應用scikit-learn這個成熟的第三方庫中的模型。
本書適用於想瞭解傳統機器學習算法的學生和從業者,想知道如何高效實現機器的算法的程序員,以及想瞭解機器學習的算法能如何進行應用的職員、經理等。
第1章 Python與機器學習入門 1
1.1 機器學習緒論 1
1.1.1 什麼是機器學習 2
1.1.2 機器學習常用術語 3
1.1.3 機器學習的重要性 6
1.2 人生苦短,我用Python 7
1.2.1 為何選擇Python 7
1.2.2 Python 在機器學習領域的優勢 8
1.2.3 Anaconda的安裝與使用 8
1.3 1個機器學習樣例 12
1.3.1 獲取與處理數據 13
1.3.2 選擇與訓練模型 14
1.3.3 評估與可視化結果 15
1.4 本章小結 17
第2章 貝葉斯分類器 18
2.1 貝葉斯學派 18
2.1.1 貝葉斯學派與頻率學派 19
2.1.2 貝葉斯決策論 19
2.2 參數估計 20
2.2.1 極大似然估計(ML估計) 21
2.2.2 極大後驗概率估計(MAP估計) 22
2.3 樸素貝葉斯 23
2.3.1 算法陳述與基本架構的搭建 23
2.3.2 MultinomialNB的實現與評估 31
2.3.3 GaussianNB的實現與評估 40
2.3.4 MergedNB的實現與評估 43
2.3.5 算法的嚮量化 50
2.4 半樸素貝葉斯與貝葉斯網 53
2.4.1 半樸素貝葉斯 53
2.4.2 貝葉斯網 54
2.5 相關數學理論 55
2.5.1 貝葉斯公式與後驗概率 55
2.5.2 離散型樸素貝葉斯算法 56
2.5.3 樸素貝葉斯和貝葉斯決策 58
2.6 本章小結 59
第3章 決策樹 60
3.1 數據的信息 60
3.1.1 信息論簡介 61
3.1.2 不確定性 61
3.1.3 信息的增益 65
3.1.4 決策樹的生成 68
3.1.5 相關的實現 77
3.2 過擬閤與剪枝 92
3.2.1 ID3、C4.5的剪枝算法 93
3.2.2 CART剪枝 100
3.3 評估與可視化 103
3.4 相關數學理論 111
3.5 本章小結 113
第4章 集成學習 114
4.1 “集成”的思想 114
4.1.1 眾擎易舉 115
4.1.2 Bagging與隨機森林 115
4.1.3 PAC框架與Boosting 119
4.2 隨機森林算法 120
4.3 AdaBoost算法 124
4.3.1 AdaBoost算法陳述 124
4.3.2 弱模型的選擇 126
4.3.3 AdaBoost的實現 127
4.4 集成模型的性能分析 129
4.4.1 隨機數據集上的錶現 130
4.4.2 異或數據集上的錶現 131
4.4.3 螺鏇數據集上的錶現 134
4.4.4 蘑菇數據集上的錶現 136
4.5 AdaBoost算法的解釋 138
4.6 相關數學理論 139
4.6.1 經驗分布函數 139
4.6.2 AdaBoost與前嚮分步加法模型 140
4.7 本章小結 142
第5章 支持嚮量機 144
5.1 感知機模型 145
5.1.1 綫性可分性與感知機策略 145
5.1.2 感知機算法 148
5.1.3 感知機算法的對偶形式 151
5.2 從感知機到支持嚮量機 153
5.2.1 間隔*大化與綫性SVM 154
5.2.2 SVM算法的對偶形式 158
5.2.3 SVM的訓練 161
5.3 從綫性到非綫性 163
5.3.1 核技巧簡述 163
5.3.2 核技巧的應用 166
5.4 多分類與支持嚮量迴歸 180
5.4.1 一對多方法(One-vs-Rest) 180
5.4.2 一對一方法(One-vs-One) 181
5.4.3 有嚮無環圖方法(Directed Acyclic Graph Method) 181
5.4.4 支持嚮量迴歸(Support Vector Regression) 182
5.5 相關數學理論 183
5.5.1 梯度下降法 183
5.5.2 拉格朗日對偶性 185
5.6 本章小結 187............

深入淺齣深度學習:原理剖析與Python實踐

本書介紹瞭深度學習相關的原理與應用,全書共分為三大部分,*部分主要迴顧瞭深度學習的發展曆史,以及Theano的使用;第二部分詳細講解瞭與深度學習相關的基礎知識,包括綫性代數、概率論、概率圖模型、機器學習和*化算法;在第三部分中,針對若乾核心的深度學習模型,如自編碼器、受限玻爾茲曼機、遞歸神經網絡和捲積神經網絡等進行詳細的原理分析與講解,並針對不同的模型給齣相應的具體應用。本書適閤有一定高等數學、機器學習和Python編程基礎的在校學生、高校研究者或在企業中從事深度學習的工程師使用,書中對模型的原理與難點進行瞭深入分析,在每一章的*後都提供瞭詳細的參考文獻,讀者可以對相關的細節進行更深入的研究。*後,理論與實踐相結閤,本書針對常用的模型分彆給齣瞭相應的應用,讀者也可以在Github中下載和查看本書的代碼(https://github.com/innovation-cat/DeepLearningBook)。
1 緒論1
1.1 人工智能、機器學習與深度學習的關係2
1.1.1 人工智能——機器推理3
1.1.2 機器學習——數據驅動的科學4
1.1.3 深度學習——大腦的仿真7
1.2 深度學習的發展曆程7
1.3 深度學習技術概述9
1.3.1 從低層到高層的特徵抽象10
1.3.2 讓網絡變得更深12
1.3.3 自動特徵提取13
1.4 深度學習框架14
2 Theano基礎18
2.1 符號變量19
2.2 符號計算的抽象——符號計算圖模型22
2.3 函數25
2.3.1 函數的定義25
2.3.2 Logistic迴歸26
2.3.3 函數的復製28
2.4 條件錶達式30
2.5 循環31
2.6 共享變量38
2.7 配置38
2.7.1 通過THEANO_FLAGS配置39
2.7.2 通過.theanorc文件配置40
2.8 常用的Debug技巧41
2.9 小結42
3 綫性代數基礎43
3.1 標量、嚮量、矩陣和張量43
3.2 矩陣初等變換44
3.3 綫性相關與嚮量空間45
3.4 範數46
3.4.1 嚮量範數46
3.4.2 矩陣範數49
3.5 特殊的矩陣與嚮量52
3.6 特徵值分解53
3.7 奇異值分解55
3.8 跡運算56
3.9 樣例:主成分分析57
4 概率統計基礎61
4.1 樣本空間與隨機變量62
4.2 概率分布與分布函數62
4.3 一維隨機變量63
4.3.1 離散隨機變量和分布律63
4.3.2 連續隨機變量和概率密度函數64
4.4 多維隨機變量65
4.4.1 離散型二維隨機變量和聯閤分布律66
4.4.2 連續型二維隨機變量和聯閤密度函數66
4.5 邊緣分布67
4.6 條件分布與鏈式法則68
4.6.1 條件概率68
4.6.2 鏈式法則70
4.7 多維隨機變量的獨立性分析70
4.7.1 邊緣獨立71
4.7.2 條件獨立71
4.8 數學期望、方差、協方差72
4.8.1 數學期望72
4.8.2 方差73
4.8.3 協方差73
4.8.4 協方差矩陣75
4.9 信息論基礎78
4.9.1 信息熵78
4.9.2 條件熵80
4.9.3 互信息81
4.9.4 交叉熵與相對熵81............

TensorFlow技術解析與實戰

TensorFlow?是榖歌公司開發的深度學習框架,也是目前深度學習的主流框架之一。本書從深度學習的基礎講起,深入TensorFlow框架原理、模型構建、源代碼分析和網絡實現等各個方麵。全書分為基礎篇、實戰篇和提高篇三部分。基礎篇講解人工智能的入門知識,深度學習的方法,TensorFlow的基礎原理、係統架構、設計理念、編程模型、常用API、批標準化、模型的存儲與加載、隊列與綫程,實現一個自定義操作,並進行TensorFlow源代碼解析,介紹捲積神經網絡(CNN)和循環神經網絡(RNN)的演化發展及其TensorFlow實現、TensorFlow的**框架等知識;實戰篇講解如何用TensorFlow寫一個神經網絡程序並介紹TensorFlow實現各種網絡(CNN、RNN和自編碼網絡等),並對MINIST數據集進行訓練,講解TensorFlow在人臉識彆、自然語言處理、圖像和語音的結閤、生成式對抗網絡等方麵的應用;提高篇講解TensorFlow的分布式原理、架構、模式、API,還會介紹TensorFlow XLA、TensorFlow Debugger、TensorFlow和Kubernetes結閤、TensorFlowOnSpark、TensorFlow移動端應用,以及TensorFlow Serving、TensorFlow Fold和TensorFlow計算加速等其他特性。**後,附錄中列齣一些可供參考的公開數據集,並結閤作者的項目經驗介紹項目管理的一些建議。   本書深入淺齣,理論聯係實際,實戰案例新穎,基於**新的TensorFlow 1.1版本,涵蓋TensorFlow的新特性,非常適閤對深度學習和TensorFlow感興趣的讀者閱讀。

1篇 基礎篇

第1章 人工智能概述 2

1.1 什麼是人工智能 2

1.2 什麼是深度學習 5

1.3 深度學習的入門方法 7

1.4 什麼是TensorFlow 11

1.5 為什麼要學TensorFlow 12

1.5.1 TensorFlow的特性 14

1.5.2 使用TensorFlow的公司 15

1.5.3 TensorFlow的發展 16

1.6 機器學習的相關賽事 16

1.6.1 ImageNet的ILSVRC 17

1.6.2 Kaggle 18

1.6.3 天池大數據競賽 19

1.7 國內的人工智能公司 20

1.8 小結 22

第2章 TensorFlow環境的準備 23

2.1 下載TensorFlow 1.1.0 23

2.2 基於pip的安裝 23

2.2.1 Mac OS環境準備 24

2.2.2 Ubuntu/Linux環境準備 25

2.2.3 Windows環境準備 25

2.3 基於Java的安裝 28

2.4 從源代碼安裝 29

2.5 依賴的其他模塊 30

2.5.1 numpy 30

2.5.2 matplotlib 31

2.5.3 jupyter 31

2.5.4 scikit-image 32

2.5.5 librosa 32

2.5.6 nltk 32

2.5.7 keras 33

2.5.8 tflearn 33

2.6 小結 33

第3章 可視化TensorFlow 34

3.1 PlayGround 34

3.1.1 數據 35

3.1.2 特徵 36

3.1.3 隱藏層 36

3.1.4 輸齣 37

3.2 TensorBoard 39

3.2.1 SCALARS麵闆 40

3.2.2 IMAGES麵闆 41

3.2.3 AUDIO麵闆 42

3.2.4 GRAPHS麵闆 42

3.2.5 DISTRIBUTIONS麵闆 43

3.2.6 HISTOGRAMS麵闆 43

3.2.7 EMBEDDINGS麵闆 44

3.3 可視化的例子 44

3.3.1 降維分析 44

3.3.2 嵌入投影儀 48

3.4 小結 51

第4章 TensorFlow基礎知識 52

4.1 係統架構 52

4.2 設計理念 53

4.3 編程模型 54

4.3.1 邊 56

4.3.2 節點 57

4.3.3 其他概念 57

4.4 常用API 60

4.4.1 圖、操作和張量 60

4.4.2 可視化 61

4.5 變量作用域 62

4.5.1 variable_scope示例 62

4.5.2 name_scope示例 64

4.6 批標準化 64

4.6.1 方法 65

4.6.2 優點 65

4.6.3 示例 65

4.7 神經元函數及優化方法 66

4.7.1 激活函數 66

4.7.2 捲積函數 69

4.7.3 池化函數 72

4.7.4 分類函數 73

4.7.5 優化方法 74

4.8 模型的存儲與加載 79

4.8.1 模型的存儲與加載 79

4.8.2 圖的存儲與加載 82

4.9 隊列和綫程 82

4.9.1 隊列 82

4.9.2 隊列管理器 85

4.9.3 綫程和協調器 86

4.10 加載數據 87

4.10.1 預加載數據 87

4.10.2 填充數據 87

4.10.3 從文件讀取數據 88

4.11 實現一個自定義操作 92

4.11.1 步驟 92

4.11.2 *佳實踐 93

4.12 小結 101

第5章 TensorFlow源代碼解析 102

5.1 TensorFlow的目錄結構 102

5.1.1 contirb 103

5.1.2 core 104

5.1.3 examples 105

5.1.4 g3doc 105

5.1.5 python 105

5.1.6 tensorboard 105

5.2 TensorFlow源代碼的學習方法 106

5.3 小結 108...........


用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有