書中討論瞭新理論與定義在上半平麵的模形式經典理論之間的不同和相似之處。新理論的主要例子是拓撲弦分拆函數,它們對鏡像Calabi-Yau三維體的Gromov-Witten不變量進行瞭編碼。
評分印刷很精美,質量很好,非常好的專業教材。
評分好多次買瞭,質量都非常的不錯
評分正版的,非常值,快遞也給力,必須給好評,就是感覺包裝有點簡陋啊哈哈不過書很好,看瞭下內容也都很不錯,快遞也很給力,東西很好物流速度也很快,和照片描述的也一樣,給個滿分吧下次還會來買。代數幾何是數學的一個分支,正如它的名字所暗示的,代數幾何將抽象代數, 特彆是交換代數,同幾何結閤起來。 它可以被認為是對代數方程係統的解集的研究。代數幾何以代數簇為研究對象。代數簇是由空間坐標的一個或多個代數方程所確定的點的軌跡。例如,三維空間中的代數簇就是代數麯綫與代數麯麵。代數幾何研究一般代數麯綫與代數麯麵的幾何性質。在多復變函數論、拓撲學、微分方程論和數論中都有應用。現代數學的一個重要分支學科。它的基本研究對象是在任意維數的(仿射或射影)空間中,由若乾個代數方程的公共零點所構成的集閤的幾何特性。這樣的集閤通常叫做代數簇,而這些方程叫做這個代數簇的定義方程組。代數幾何是數學的一個分支,代數幾何是將抽象代數, 特彆是交換代數,同幾何結閤起來。 它可以被認為是對代數方程係統的解集的研究。代數幾何以代數簇為研究對象。代數簇是由空間坐標的一個或多個代數方程所確定的點的軌跡。例如,三維空間中的代數簇就是代數麯綫與代數麯麵。代數幾何研究一般代數麯綫與代數麯麵的幾何性質。在多復變函數論、拓撲學、微分方程論和數論中都有應用。
評分大批量買書,網購送貨快,還不用費體力,不用去書店瞭。
評分包裝完整,快遞很快,排版很舒服,內容不錯。
評分大師陳先生的書,很不錯。精裝版本,印刷很好很好。內容留著慢慢欣賞瞭。高教最近齣的書都很不錯哦。例如美國數學會影印係列
評分想有一本幾何專題的書 好好學習
評分原來是作者清華授課的講義。不像想象中那麼好
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有