Scikit-Learn与TensorFlow机器学习实用指南(影印版)

Scikit-Learn与TensorFlow机器学习实用指南(影印版) 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
Aurélien,Géron 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-02-02

图书介绍


出版社: 东南大学出版社
ISBN:9787564173715
版次:1
商品编码:12241590
包装:平装
开本:16开
出版时间:2017-10-01
用纸:胶版纸


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  通过具体的例子、很少的理论以及两款成熟的Python框架:Scikit-Learn和TensorFlow,作者Aurélien Géron会帮助你掌握构建智能系统所需要的概念和工具。你将会学习到各种技术,从简单的线性回归及发展到深度神经网络。每章的练习有助于你运用所学到的知识,你只需要有一些编程经验就行了。
  探索机器学习,尤其是神经网络
  使用Scikit-Learn全程跟踪一个机器学习项目的例子
  探索各种训练模型,包括:支持向量机、决策树、随机森林以及集成方法
  使用TensorFlow库构建和训练神经网络
  深入神经网络架构,包括卷积神经网络、循环神经网络和深度强化学习
  学习可用于训练和缩放深度神经网络的技术
  运用实际的代码示例,无需了解过多的机器学习理论或算法细节

作者简介

  Aurélien Géron,是一名机器学习顾问。作为一名前Google职员,在2013至2016年间,他领导了YouTube视频分类团队。在2002至2012年间,他身为法国主要的无线ISP Wifirst的创始人和CTO,在2001年他还是Polyconseil的创始人和CTO,这家公司现在管理着电动汽车共享服务Autolib'。

精彩书评

  “本书很好地介绍了利用神经网络解决问题的相关理论与实践。它涵盖了构建高效应用涉及的关键点以及理解新技术所需的背景知识。我向有兴趣学习实用机器学习的读者推荐这本书。”
  —— Pete Warden
  TensorFlow移动部门主管

目录

Preface

Part Ⅰ.The Fundamentals of Machine Learning
1. The Machine Learning Landscape
What Is Machine Learning?
Why Use Machine Learning?
Types of Machine Learning Systems
Supervised/Unsupervised Learning
Batch and Online Learning
Instance-Based Versus Model-Based Learning
Main Challenges of Machine Learning
Insufficient Quantity of Training Data
Nonrepresentative Training Data
Poor-Quality Data
Irrelevant Features
Overfitting the Training Data
Underfitting the Training Data tepping Back
Testing and Validating
Exercises
2. End-to-End Machine Learning Project
Working with Real Data
Look at the Big Picture
Frame the Problem
Select a Performance Measure
Check the Assumptions
Get the Data
Create the Workspace
Download the Data
Take a Quick Look at the Data Structure
Create a Test Set
Discover and Visualize the Data to Gain Insights
Visualizing Geographical Data
Looking for Correlations
Experimenting with Attribute Combinations
Prepare the Data for Machine Learning Algorithms
Data Cleaning
Handling Text and Categorical Attributes
Custom Transformers
Feature Scaling
Transformation Pipelines
Select and Train a Model
Training and Evaluating on the Training Set
Better Evaluation Using Cross-Validation
Fine-Tune Your Model
Grid Search
Randomized Search
Ensemble Methods
Analyze the Best Models and Their Errors
Evaluate Your System on the Test Set
Launch, Monitor, and Maintain Your System
Try It Out!
Exercises
3. Classification
MNIST
Training a Binary Classifier
Performance Measures
Measuring Accuracy Using Cross-Validation
Confusion Matrix
Precision and Recall
Precision/Recall Tradeoff
The ROC Curve
Multiclass Classification
Error Analysis
Multilabel Classification
Multioutput Classification
……

Part Ⅱ.Neural Networks and Deep Learning
A. Exercise Solutions
B. Machine Learning Project Checklist
C. SVM Dual Problem
D. Autodiff
E. Other Popular ANN Architectures
Index

精彩书摘

  《Scikit-Learn与TensorFlow机器学习实用指南(影印版)》:
  3.It is quite possible to speed up training of a bagging ensemble by distributing it across multiple servers, since each predictor in the ensemble is independent of the others.The same goes for pasting ensembles and Random Forests, for the same reason.However, each predictor in a boosting ensemble is built based on the previous predictor, so training is necessarily sequential, and you will not gain anything by distributing training across multiple servers.Regarding stacking ensembles, all the predictors in a given layer are independent of each other, so they can be trained in parallel on multiple servers.However, the predictors in one layer can only be trained after the predictors in the previous layer have all been trained.
  4.With out-of-bag evaluation, each predictor in a bagging ensemble is evaluated using instances that it was not trained on (they were held out).This makes it pos-sible to have a fairly unbiased evaluation of the ensemble without the need for an additional validation set.Thus, you have more instances available for training, and your ensemble can perform slightly better.
  5.When you are growing a tree in a Random Forest, only a random subset of the features is considered for splitting at each node.This is true as well for Extra-Trees, but they go one step further: rather than searching for the best possible thresholds, like regular Decision Trees do, they use random thresholds for each feature.This extra randomness acts like a form of regularization: if a Random Forest overfits the training data, Extra-Trees might perform better.Moreover, since Extra-Trees don't search for the best possible thresholds, they are much faster to train than Random Forests.However, they are neither faster nor slower than Random Forests when making predictions.
  6.Ifyour AdaBoost ensemble underfits the training data, you can try increasing the number of estimators or reducing the regularization hyperparameters of the base estimator.You may also try slightly increasing the learning rate.
  ……
Scikit-Learn与TensorFlow机器学习实用指南(影印版) 下载 mobi epub pdf txt 电子书 格式

Scikit-Learn与TensorFlow机器学习实用指南(影印版) mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

Scikit-Learn与TensorFlow机器学习实用指南(影印版) 下载 mobi pdf epub txt 电子书 格式 2025

Scikit-Learn与TensorFlow机器学习实用指南(影印版) 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

大神的新作品,介绍数据科学与R编程,注定成为经典的一本书!

评分

帮老公买的,包装不错,送货速度快

评分

帮同事买的,应该还不错,希望同事满意

评分

写的比较生动,也是正版

评分

如果包装更环保就更好了

评分

还好哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈

评分

在技术方面,青铜冶铸技术在春秋战国时期发展到最高阶段。从春秋中期到战国时期,青铜冶铸已经从西周时期比较单一的陶范铸造发展到综合地使用多种金属工艺,创造新的器形、纹饰,达到了新的技术高度。战国中期以后,冶铁技术很发达,出现了三项重大突破:一是生铁冶铸技术的出现。在战国时期,用生铁铸成的农具和手工工具已被广泛应用。但是早期的生铁都是白口铁,碳以碳化铁的形式存在,性脆易折。二是炼钢技术的出现。三是铸铁柔化术的出现。将成型铸铁器件在高温下进行弱化处理,可得到强度、任性大为改善的韧性铸铁和白心韧性铸铁,铁器件得以在战国时期广泛应用。春秋末期大型渠系工程开始兴建,战国时期更加盛行。这是统治阶级实施重农政策的一项重大措施。著名的渠系工程.这一时期,手工业生产技术也取得了很大进步,内部分工细密和手工业技术的规范化是这一时期手工业发展的突出特点。《考工记》是我国第一部手工业技术规范汇集,它对车辆的制作工艺和规范、弓箭的材料要求和技术要求、乐器的制作和乐音知识等你都有了完整的说明。这一时期中国独特的医学理论初步建立。医学方面出现专门的医学著作。之前的《扁鹊内经》、《扁鹊外经》应经佚失。

评分

好好好好好

评分

书是好书,书的品相不行。皱褶很多

类似图书 点击查看全场最低价

Scikit-Learn与TensorFlow机器学习实用指南(影印版) mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有