正版 3GPP网络中的IPv6部署:从2G向LTE及未来移动宽带的演进 尤尼.高亨(Jo

正版 3GPP网络中的IPv6部署:从2G向LTE及未来移动宽带的演进 尤尼.高亨(Jo pdf epub mobi txt 电子书 下载 2025

尤尼.高亨Jouni Korhonen,孙玉 著
图书标签:
  • 3GPP
  • IPv6
  • LTE
  • 移动通信
  • 网络部署
  • 无线通信
  • 移动宽带
  • 通信工程
  • 尤尼
  • 高亨
  • 未来网络
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 博古通今图书专营店
出版社: 机械工业出版社
ISBN:9787111512592
商品编码:29775164113
包装:平装
出版时间:2015-11-01

具体描述

基本信息

书名:3GPP网络中的IPv6部署:从2G向LTE及未来移动宽带的演进

定价:89.00元

作者:尤尼.高亨(Jouni Korhonen) ,孙玉荣

出版社:机械工业出版社

出版日期:2015-11-01

ISBN:9787111512592

字数:

页码:

版次:1

装帧:平装

开本:16开

商品重量:0.4kg

编辑推荐


本书涉及目前移动通信行业的*热点LTE技术,也涉及网络通信*热点得IPv6技术,本书作者将两者有机结合起来,论述了从2G到LTE整个移动通信发展对网络地址的需求,可以说是目前系统论述这个热门专题的专著;同时本书作者来自芬兰,参与了NOKIA和ARPA网等的研究和设计,使得本书内容非常和实用!

内容提要


本书内容涵盖互联网协议版本6(IPv6)在蜂窝移动宽带当前业界标准中的定义和采取这条路线的技术原因,以及当前部署的真实情况。本书给出了作者认为在未来数年如何改进IPv6相关的高级3GPP网络的观点、在3GPP移动宽带环境中正确地实现和部署IPv6的方法以及当具体实施时可能面对的问题。本书涉及从2G到LTE的3GPP技术,并提供了未来发展的思路。
  本书适合部署IPv6网络的运营商、网络厂商以及涉及IPv6相关开发的应用开发商或手机制造商的工程技术人员和研究人员阅读。本书也可为希望在IPv6网络知识和在3GPP网络中对IPv6过渡感兴趣的计算机、通信相关专业在校本科生和研究生提供参考。

目录


译者序
原书序
原书前言
原书致谢
章引言
1.1互联网和互联网协议引言
1.2互联网原则
1.3互联网协议
1.3.1由网络组成的网络
1.3.2路由和转发
1.4互联网协议地址
1.4.1IPv4地址
1.4.2IPv6地址
1.5传输协议
1.5.1用户数据报协议
1.5.2传输控制协议
1.5.3端口号和服务
1.6域名服务
1.6.1DNS结构
1.6.2DNS操作
1.6.3域
1.6.4国际化的域名
1.7IPv4地址耗尽
1.7.1IP地址分配
1.7.2IPv4地址耗尽的历史
1.8迄今为止IPv6的历史
1.8.1IPv6技术成熟度
1.8.2IPv6网络部署
1.9正在进行的蜂窝部署
1.10本章小结
1.11建议的阅读材料
参考文献
第2章3GPP技术基础
2.1标准化和规范
2.1.13GPP标准化过程
2.1.2IETF标准化过程
2.1.33GPP生态系统中的其他重要组织
2.23GPP网络架构和协议简介
2.2.1GSM系统
2.2.2通用分组无线服务
2.2.3演进的分组系统
2.2.4控制平面和用户平面及传输层和用户层隔离
2.33GPP协议
2.3.1控制平面协议
2.3.2用户平面协议
2.3.3GPRS隧道协议版本
2.3.4基于PMIP的EPS架构
2.4移动性与漫游
2.4.1移动性管理
2.4.2漫游
2.4.33GPP外的移动性管理
2.5IP连接能力的中心概念
2.5.1PPP语境和EPS载波
2.5.2APN
2.5.3流量流模板
2.5.43GPP链路模型原则
2.5.5多条分组数据网络连接
2.6用户设备
2.6.1传统3GPP UE模型
2.6.2分离的UE
2.7订购管理数据库和其他后端系统
2.7.1归属位置寄存器和认证中心
2.7.2归属用户服务器
2.7.3设备身份寄存器
2.7.4其他后端系统
2.8从用户设备到互联网的端到端视图
2.8.1GPRS
2.8.2EPS
2.9本章小结
2.10建议的阅读材料
参考文献
第3章IPv6简介
3.1IPv6寻址架构
3.1.1IPv6地址格式
3.1.2IPv6地址类型
3.1.3IPv6地址范围
3.1.4IPv6寻址区
3.1.5网络接口上的IPv6地址
3.1.6接口标识符和修改的EUI64
3.1.7IPv6地址空间分配
3.1.8特殊的IPv6地址格式
3.1.9IPv6地址的文本表示
3.2IPv6分组首部结构和扩展性
3.2.1流量类和流标签
3.2.2IPv6扩展首部
3.2.3MTU和分片
3.2.4组播
3.3互联网控制消息协议版本6
3.3.1错误消息
3.3.2信息型消息
3.4邻居发现协议
3.4.1路由器发现
3.4.2参数发现
3.4.3在链路上判定
3.4.4链路层地址解析
3.4.5邻居不可达性检测
3.4.6下一跳判定
3.4.7重复地址检测
3.4.8重定向
3.4.9安全邻居发现
3.4.10邻居发现代理
3.5地址配置和选择方法
3.5.1无状态地址自动配置
3.5.2DHCPv6
3.5.3IKEv2
3.5.4地址选择
3.5.5隐私和以密码学方式产生的地址
3.5.6路由器选择
3.6IPv6链路类型和模型
3.6.1点到点链路上的IPv6
3.6.2共享媒介上的IPv6
3.6.3链路编址
3.6.4链路类型的桥接
3.7移动IP
3.7.1监测网络附接
3.7.2基于主机的移动IP
3.7.3基于网络的移动IP
3.8IP安全性
3.8.1安全协议
3.8.2安全关联
3.8.3密钥管理
3.8.4密码学算法
3.8.5MOBIKE
3.9应用编程接口
3.9.1套接字API
3.9.2地址组无感知API
3.9.3IP地址字面文本和的资源标识符
3.9.4“幸福的眼球”
3.10IPv6对其他协议的隐含意义
3.10.1传输层协议
3.10.2域名系统
3.10.3应用
3.10.4互联网路由
3.10.5管理信息库
3.11确认和认证
3.11.1测试套件
3.11.2IPv6就绪标志
3.12IPv6分组流的例子
3.12.1以太网上的IPv6
3.12.2采用DNS和TCP的IPv6
3.13本章小结
参考文献
第4章3GPP网络中的IPv6
4.1PDN连接服务
4.1.1载波概念
4.1.2PDP和PDN类型
4.1.33GPP中的链路模型
4.2端用户IPv6服务对3GPP系统的影响
4.2.1用户、控制和传输平面
4.2.2受到影响的联网单元
4.2.3计费和计账
4.2.4外部PDN接入和(S)Gi接口
4.2.5漫游挑战
4.3端用户IPv6服务对GTP和PMIPv6协议的影响
4.3.1GTP控制平面版本1
4.3.2GTP控制平面版本2
4.3.3GTP用户平面
4.3.4PMIPv6
4.4IP地址指派、配置和管理
4.4.1寻址假定
4.4.2无状态IPv6地址自动分配
4.4.3有状态IPv6地址配置
4.4.4延迟的地址分配
4.4.5静态IPv6寻址
4.4.6IPv6前缀委派
4.4.7NAS协议信令和CP选项
4.4.8带有IPv4和IPv6地址配置的初始EUTRAN附接例子
4.5载波建立和回退场景
4.5.1初始连接建立
4.5.2与较早期发行版本的后向兼容能力
4.5.3双地址载波标志
4.5.4在一个PGW中被请求PDN类型的处理
4.5.5回退场景和规则
4.5.6RAT间切换和SGSN间路由区域更新
4.6信令接口
4.6.1IPv6作为传输层
4.6.2信息元素层次中的IPv6
4.7用户设备特定考虑
4.7.1IPv6和被影响的层
4.7.2主机UE所必须支持的RFC
4.7.3DNS问题
4.7.4就绪提供
4.7.5IPv6栓链法
4.7.6IPv6应用支持
4.8组播
4.9已知的IPv6问题和异常
4.9.1IPv6邻居发现考虑
4.9.2PDN连接模型和多个IPv6前缀
4.10IPv6特定的安全考虑
4.10.1IPv6寻址威胁
4.10.2IPv6跳安全
4.10.3IPv6扩展首部被非法利用
4.11本章小结
参考文献
第5章3GPP网络的IPv6过渡机制
5.1过渡机制的诱因
5.2技术概述
5.2.1转换
5.2.2封装
5.2.3网状网络或星形网络
5.2.4可扩展性的考虑
5.3过渡工具箱
5.3.1未包含在内的过渡方案
5.3.2双栈
5.3.3NAT64和DNS64
5.3.4464XLAT
5.3.5主机中的隆块
5.3.6地址和端口号映射
5.3.7其他隧道技术或基于翻译的过渡机制
5.43GPP的过渡场景
5.4.1过渡场景演进
5.4.2双栈
5.4.3纯IPv6
5.4.4双重转换
5.5过渡对3GPP架构的影响
5.5.1过渡对支撑基础设施的影响
5.5.2IP网络支持系统
5.5.3依据IP能力对用户分类的工具
5.5.4转换的隐含意义
5.5.5在传输平面中对过渡的支持
5.5.6漫游
5.5.7延迟过渡到IPv6产生的影响
5.6过渡到IPv6
5.6.1应用开发人员的过渡计划
5.6.2电话厂商的过渡计划
5.6.3网络运营商的过渡检查单
5.7本章小结
参考文献
第6章IPv6在3GPP网络中的未来
6.1基于IPv6的流量卸载解决方案
6.1.1蜂窝网络中的动机
6.1.2基于IPv6卸载方法的优势
6.1.3IP友好的卸载解决方案
6.1.4结论性的注释
6.2演进3GPP载波支持多前缀和下一跳路由器
6.2.1背景和动机
6.2.2多前缀载波解决方案建议
6.2.3整体影响分析
6.2.4开放问题和未来工作
6.3LTE作为家庭网络的上行链路接入
6.3.1IETF下的Home
6.3.2Home和3GPP架构
6.3.3其他3GPP部署选项
6.4端口控制协议
6.4.1部署场景
6.4.2协议特征
6.4.3PCP服务器发现
6.4.4协议消息
6.4.5级联的NAT
6.4.6与IPv6过渡的关系
6.5物联网
6.5.1典型用例
6.5.2研究IoT的标准化组织
6.5.33GPP观点的IoT域
6.5.4对UE的隐含意义
6.5.5对3GPP网络的隐含意义
6.6本章小结
参考文献
附录
附录A本书术语释义
附录B缩略语中英文对照表

作者介绍


文摘


序言



IPv6 in 3GPP Networks: Evolving from 2G to LTE and Future Mobile Broadband Introduction The rapid growth of mobile devices and data consumption has placed immense pressure on existing IPv4 infrastructure. The limited address space of IPv4, coupled with its inherent complexities, necessitates a transition to IPv6 to support the ever-expanding landscape of mobile broadband. This book delves into the comprehensive deployment of IPv6 within 3GPP networks, charting a course from the foundational 2G era through the advanced capabilities of LTE and into the realm of future mobile broadband technologies. It provides a detailed examination of the technical challenges, strategic considerations, and practical implementation aspects involved in seamlessly integrating IPv6 into the complex architecture of mobile communication systems. The Need for IPv6 in Mobile Networks The evolution of mobile networks from 2G to 5G and beyond is characterized by an exponential increase in connected devices and data traffic. While 2G networks primarily focused on voice and basic data services, 3G and 4G (LTE) introduced richer multimedia experiences, and the advent of 5G promises a hyper-connected world supporting IoT, autonomous vehicles, and immersive technologies. This data explosion has stretched the capabilities of IPv4 to its breaking point. IPv4's 32-bit address space, providing approximately 4.3 billion unique addresses, has proven insufficient to cater to the growing demand. Techniques like Network Address Translation (NAT) have been employed to conserve IPv4 addresses, but NAT introduces complexity, breaks end-to-end connectivity, and hinders the development of certain applications. The limitations of NAT become particularly apparent in mobile environments where dynamic IP addressing and the need for seamless roaming are critical. IPv6, with its vastly larger 128-bit address space, offers an almost inexhaustible supply of unique addresses. This abundance eliminates the need for NAT in most scenarios, restoring end-to-end connectivity and simplifying network management. Furthermore, IPv6 incorporates several architectural improvements over IPv4, including simplified header formats, improved support for mobility, and enhanced security features, making it a natural and essential successor for mobile network infrastructure. IPv6 Deployment Challenges and Strategies Deploying IPv6 in a live mobile network is a complex undertaking that requires careful planning and execution. The transition is not simply a matter of enabling a protocol; it involves a paradigm shift in network architecture, addressing schemes, and operational procedures. 1. Coexistence and Transition Mechanisms: A key challenge in IPv6 deployment is the need for seamless coexistence with existing IPv4 networks during the transition period. Mobile operators cannot simply switch off IPv4 overnight; a robust strategy for dual-stack operation (running both IPv4 and IPv6 simultaneously) is crucial. The book explores various transition mechanisms, including: Dual Stack: This is the most common approach, where devices and network elements support both IPv4 and IPv6 protocols. This allows for gradual migration and ensures backward compatibility. Tunneling: Techniques like 6to4, ISATAP, and Teredo enable IPv6 packets to be encapsulated within IPv4 packets for transmission over IPv4-only networks. This is particularly useful for connecting IPv6 islands over an IPv4 infrastructure. Translation: Protocols like NAT64 and DNS64 facilitate communication between IPv6-only clients and IPv4-only servers. This allows IPv6 devices to access the vast amount of content and services still available on the IPv4 internet. The book provides detailed explanations of how these mechanisms are implemented and managed within 3GPP networks, considering the unique requirements of mobile connectivity, such as mobility management and Quality of Service (QoS). 2. Addressing and Numbering Plans: The vastness of the IPv6 address space offers flexibility but also requires careful consideration of addressing and numbering plans. Mobile operators need to develop strategies for allocating IPv6 addresses to User Equipment (UE), network elements, and internal services. This includes: GUA (Global Unicast Address) Assignment: Determining how UEs obtain their global IPv6 addresses, often through SLAAC (Stateless Address Autoconfiguration) or DHCPv6 (Dynamic Host Configuration Protocol for IPv6). ULA (Unique Local Address) Usage: Leveraging ULAs for internal network communication to simplify management and avoid address exhaustion within the operator's private network. Prefix Delegation: The process by which network elements delegate IPv6 prefixes to downstream networks or devices. The book explores best practices for designing efficient and scalable IPv6 addressing schemes that support the dynamic nature of mobile networks. 3. Core Network Integration: Integrating IPv6 into the 3GPP core network is a multifaceted process. This involves adapting various network functions and protocols to support IPv6: IP Multimedia Subsystem (IMS): IMS, the architectural framework for delivering IP multimedia services, is inherently designed to support IPv6. The book details how IMS entities like the P-CSCF (Proxy-Call Session Control Function), S-CSCF (Serving-Call Session Control Function), and HSS (Home Subscriber Server) are adapted for IPv6. Packet Core Evolution (SGSN/GGSN to SGW/PGW): The transition from 2G/3G packet core components (SGSN/GGSN) to 4G/5G components (SGW/PGW) has been a significant step in facilitating IPv6 deployment. The book examines the IPv6 capabilities of these evolved elements. Mobility Management: Mobile devices are constantly moving, requiring robust mobility management. IPv6 offers improved support for mobility through features like Mobile IPv6. The book discusses how these features are integrated into the 3GPP architecture. Charging and Billing: Adapting charging and billing systems to handle IPv6 traffic is crucial. This involves ensuring that charging records accurately reflect IPv6 usage and that billing systems can process the associated data. 4. Radio Access Network (RAN) Considerations: While the core network is central to IPv6 deployment, the Radio Access Network (RAN) also plays a vital role. The book addresses: UE IPv6 Support: Ensuring that UE devices are compliant with IPv6 standards and can effectively communicate over the network. RAN Element IPv6 Capability: Verifying that base stations (eNodeBs in LTE, gNBs in 5G) and other RAN components can handle IPv6 traffic. Interworking with IPv4: Managing the seamless interworking between IPv6 and IPv4 traffic at the RAN level. 5. Security Aspects of IPv6 Deployment: While IPv6 offers enhanced security features, its deployment also introduces new security considerations. The book provides a comprehensive overview of IPv6 security, including: IPsec Integration: The mandatory support for IPsec in IPv6, which provides authentication and encryption for IP packets. Firewalling and Access Control: Implementing appropriate firewall rules and access control lists for IPv6 traffic. SLAAC Security: Addressing potential security vulnerabilities associated with stateless autoconfiguration. Threats and Vulnerabilities: Identifying and mitigating potential threats and vulnerabilities specific to IPv6 networks. Evolution from 2G to LTE and Future Mobile Broadband The book traces the evolution of IPv6 deployment across different generations of mobile technology: 2G Era: While 2G networks were primarily IPv4-centric, the groundwork for IP-based services was laid. The challenges and limitations of IPv4 in 2G are discussed as a prelude to the IPv6 imperative. 3G Evolution: 3G introduced more data-intensive services, highlighting the growing need for a more scalable addressing solution. Early IPv6 experiments and integration efforts in 3G networks are examined. LTE Deployment: The widespread adoption of LTE has been a major catalyst for IPv6 deployment. The book details the architectural changes in LTE that facilitate IPv6, such as the separation of control and user planes and the evolved packet core. It discusses the successful strategies employed by operators to migrate to dual-stack LTE networks. Future Mobile Broadband (5G and Beyond): 5G networks are designed with IPv6 as a fundamental pillar. The book explores how IPv6 underpins key 5G features like network slicing, massive IoT, and enhanced mobile broadband, and anticipates the challenges and opportunities of IPv6 in future mobile communication paradigms. Operational and Management Aspects Beyond the technical implementation, the book emphasizes the importance of operational and management considerations for successful IPv6 deployment: Network Monitoring and Troubleshooting: Developing tools and techniques for monitoring IPv6 network performance and troubleshooting issues. Device Management: Managing the lifecycle of devices, including their IPv6 configurations. Inter-Operator Roaming: Ensuring seamless IPv6 roaming between different mobile operators. Automation and Orchestration: Leveraging automation and orchestration tools to manage complex IPv6 deployments. Conclusion The transition to IPv6 is not merely a technical upgrade; it is a strategic imperative for mobile operators to future-proof their networks, unlock new revenue streams, and deliver the ever-increasing demands of mobile broadband users. This book provides a comprehensive, in-depth guide to navigating the complexities of IPv6 deployment in 3GPP networks. By understanding the challenges, adopting effective strategies, and embracing the evolution of mobile technologies, operators can successfully transition to an IPv6-enabled future, paving the way for a more connected and innovative mobile world.

用户评价

评分

初次接触这本书的作者名字——尤尼·高亨,虽然名字略显陌生,但从其著作的专业深度来看,想必是领域内的资深专家。这种由一线实践者撰写的技术书籍,往往比纯理论研究的成果更接地气、更具可操作性。我特别欣赏这种将宏大叙事与微观操作相结合的写作手法。例如,在探讨网络功能虚拟化(NFV)与IPv6融合的章节时,期望能看到一些关于如何在实际运营商网络中进行Pilot项目部署的案例分析,而不是停留在RFC的文字解读上。这种对“实战细节”的关注,是区分优秀技术书籍与平庸之作的关键分水岭。如果这本书能提供一些代码片段或者配置示例的思路,那就更完美了,因为在网络工程领域,光靠文字描述是无法完全掌握精髓的,真正掌握技术需要动手实践的参照物。这本书给我的感觉是,它试图成为技术人员在面临大规模网络升级时的“幕后军师”。

评分

从这本书的标题结构来看,它似乎是在试图打通一个跨越多个时代的技术壁垒——从老旧的2G/3G架构如何平滑过渡到高度依赖IP化的LTE和未来的移动宽带环境。这种“演进”的视角是极其重要的,因为在现实世界中,网络升级很少是推倒重来,更多的是复杂的共存和渐进替换。我非常关注它如何处理IPv4到IPv6的地址转换和双栈部署的复杂性。例如,在网络侧如何优化SCTP/Diameter协议栈在IPv6环境下的性能,或者在用户面如何保障漫游时的连接连续性等关键问题,这些都是在实际项目中容易被忽视但至关重要的细节。一本书如果能清晰地梳理出这些历史遗留问题和前瞻性解决方案之间的逻辑联系,那么它就不仅仅是一本技术手册,而是一部移动通信协议演进的编年史,对于理解整个行业的发展轨迹具有不可估量的参考价值。

评分

这本书的封面设计得相当专业,那种深邃的蓝色调配上清晰的字体,一下子就给人一种严谨、技术性很强的感觉。我记得当时在书店里翻到它,光是标题那一长串“3GPP网络中的IPv6部署:从2G向LTE及未来移动宽带的演进”就已经足够吸引我了,毕竟在移动通信领域摸爬滚打多年,深知协议栈演进的重要性。这本书的装帧质量也令人满意,纸张厚实,印刷清晰,很适合经常翻阅和做笔记的工程师。那种沉甸甸的手感,仿佛预示着里面蕴含的知识重量。虽然我还没来得及深入研读每一个章节的技术细节,但仅从这第一印象来看,它无疑是为那些致力于下一代移动网络架构设计和实施的专业人士量身打造的精品。它不像一些泛泛而谈的入门读物,而是直指核心技术痛点,从历史的脉络过渡到前沿的实践,这种定位非常精准,让人对接下来要探索的内容充满了期待,希望它能提供真正具有指导意义的实战经验,而非仅仅是理论的堆砌。

评分

这本书的厚度令人印象深刻,这通常意味着内容密度极高,没有一句废话。我倾向于认为,一本好的技术书籍,其价值不在于篇幅的短小,而在于其知识的“不可替代性”。在这个技术迭代速度快到令人窒息的时代,能够系统性地总结某一特定领域(如移动宽带中的IPv6部署)演进历程和关键挑战的书籍,就显得尤为珍贵。我期望它能深入剖析移动IP技术在应对海量物联网设备接入时可能遇到的地址空间和管理难题,这恰恰是当前业界热议的焦点。如果书中能对5G及未来6G的愿景下,IPv6如何继续演化,提供一些富有洞察力的预测和技术前瞻,那就更值回票价了。这类书籍是技术人员保持知识“保鲜度”的必需品,而不是快餐式的学习资料,它需要被时间反复检验。

评分

这本书的排版风格透露出一种老派的学术严谨性,页边距适中,关键术语和公式都有特别的处理,这对于需要反复查阅和交叉引用的技术文档来说至关重要。我注意到它在章节的组织上似乎采用了某种逻辑递进的结构,从基础的IP协议原理到在不同代际网络(2G/3G的过渡时期)中的兼容性处理,再到LTE环境下IPv6的特定隧道机制和地址分配策略,层层深入,脉络分明。这种结构安排,极大地方便了读者进行系统性的知识构建。在我过去阅读的技术书籍中,很多都是零散地介绍技术点,导致知识体系不够完整,而这本书显然在这方面下了大功夫,试图构建一个完整的知识地图。对于我们这些需要向管理层汇报技术路线图的人来说,拥有这样一本条理清晰的参考书,无疑能极大地提升沟通的效率和准确性,因为它不仅告诉你“是什么”,更重要的是解释了“为什么是这样”以及“如何实现”。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有