正版 3GPP網絡中的IPv6部署:從2G嚮LTE及未來移動寬帶的演進 尤尼.高亨(Jo

正版 3GPP網絡中的IPv6部署:從2G嚮LTE及未來移動寬帶的演進 尤尼.高亨(Jo pdf epub mobi txt 電子書 下載 2025

尤尼.高亨Jouni Korhonen,孫玉 著
圖書標籤:
  • 3GPP
  • IPv6
  • LTE
  • 移動通信
  • 網絡部署
  • 無綫通信
  • 移動寬帶
  • 通信工程
  • 尤尼
  • 高亨
  • 未來網絡
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 博古通今圖書專營店
齣版社: 機械工業齣版社
ISBN:9787111512592
商品編碼:29775164113
包裝:平裝
齣版時間:2015-11-01

具體描述

基本信息

書名:3GPP網絡中的IPv6部署:從2G嚮LTE及未來移動寬帶的演進

定價:89.00元

作者:尤尼.高亨(Jouni Korhonen) ,孫玉榮

齣版社:機械工業齣版社

齣版日期:2015-11-01

ISBN:9787111512592

字數:

頁碼:

版次:1

裝幀:平裝

開本:16開

商品重量:0.4kg

編輯推薦


本書涉及目前移動通信行業的*熱點LTE技術,也涉及網絡通信*熱點得IPv6技術,本書作者將兩者有機結閤起來,論述瞭從2G到LTE整個移動通信發展對網絡地址的需求,可以說是目前係統論述這個熱門專題的專著;同時本書作者來自芬蘭,參與瞭NOKIA和ARPA網等的研究和設計,使得本書內容非常和實用!

內容提要


本書內容涵蓋互聯網協議版本6(IPv6)在蜂窩移動寬帶當前業界標準中的定義和采取這條路綫的技術原因,以及當前部署的真實情況。本書給齣瞭作者認為在未來數年如何改進IPv6相關的高級3GPP網絡的觀點、在3GPP移動寬帶環境中正確地實現和部署IPv6的方法以及當具體實施時可能麵對的問題。本書涉及從2G到LTE的3GPP技術,並提供瞭未來發展的思路。
  本書適閤部署IPv6網絡的運營商、網絡廠商以及涉及IPv6相關開發的應用開發商或手機製造商的工程技術人員和研究人員閱讀。本書也可為希望在IPv6網絡知識和在3GPP網絡中對IPv6過渡感興趣的計算機、通信相關專業在校本科生和研究生提供參考。

目錄


譯者序
原書序
原書前言
原書緻謝
章引言
1.1互聯網和互聯網協議引言
1.2互聯網原則
1.3互聯網協議
1.3.1由網絡組成的網絡
1.3.2路由和轉發
1.4互聯網協議地址
1.4.1IPv4地址
1.4.2IPv6地址
1.5傳輸協議
1.5.1用戶數據報協議
1.5.2傳輸控製協議
1.5.3端口號和服務
1.6域名服務
1.6.1DNS結構
1.6.2DNS操作
1.6.3域
1.6.4國際化的域名
1.7IPv4地址耗盡
1.7.1IP地址分配
1.7.2IPv4地址耗盡的曆史
1.8迄今為止IPv6的曆史
1.8.1IPv6技術成熟度
1.8.2IPv6網絡部署
1.9正在進行的蜂窩部署
1.10本章小結
1.11建議的閱讀材料
參考文獻
第2章3GPP技術基礎
2.1標準化和規範
2.1.13GPP標準化過程
2.1.2IETF標準化過程
2.1.33GPP生態係統中的其他重要組織
2.23GPP網絡架構和協議簡介
2.2.1GSM係統
2.2.2通用分組無綫服務
2.2.3演進的分組係統
2.2.4控製平麵和用戶平麵及傳輸層和用戶層隔離
2.33GPP協議
2.3.1控製平麵協議
2.3.2用戶平麵協議
2.3.3GPRS隧道協議版本
2.3.4基於PMIP的EPS架構
2.4移動性與漫遊
2.4.1移動性管理
2.4.2漫遊
2.4.33GPP外的移動性管理
2.5IP連接能力的中心概念
2.5.1PPP語境和EPS載波
2.5.2APN
2.5.3流量流模闆
2.5.43GPP鏈路模型原則
2.5.5多條分組數據網絡連接
2.6用戶設備
2.6.1傳統3GPP UE模型
2.6.2分離的UE
2.7訂購管理數據庫和其他後端係統
2.7.1歸屬位置寄存器和認證中心
2.7.2歸屬用戶服務器
2.7.3設備身份寄存器
2.7.4其他後端係統
2.8從用戶設備到互聯網的端到端視圖
2.8.1GPRS
2.8.2EPS
2.9本章小結
2.10建議的閱讀材料
參考文獻
第3章IPv6簡介
3.1IPv6尋址架構
3.1.1IPv6地址格式
3.1.2IPv6地址類型
3.1.3IPv6地址範圍
3.1.4IPv6尋址區
3.1.5網絡接口上的IPv6地址
3.1.6接口標識符和修改的EUI64
3.1.7IPv6地址空間分配
3.1.8特殊的IPv6地址格式
3.1.9IPv6地址的文本錶示
3.2IPv6分組首部結構和擴展性
3.2.1流量類和流標簽
3.2.2IPv6擴展首部
3.2.3MTU和分片
3.2.4組播
3.3互聯網控製消息協議版本6
3.3.1錯誤消息
3.3.2信息型消息
3.4鄰居發現協議
3.4.1路由器發現
3.4.2參數發現
3.4.3在鏈路上判定
3.4.4鏈路層地址解析
3.4.5鄰居不可達性檢測
3.4.6下一跳判定
3.4.7重復地址檢測
3.4.8重定嚮
3.4.9安全鄰居發現
3.4.10鄰居發現代理
3.5地址配置和選擇方法
3.5.1無狀態地址自動配置
3.5.2DHCPv6
3.5.3IKEv2
3.5.4地址選擇
3.5.5隱私和以密碼學方式産生的地址
3.5.6路由器選擇
3.6IPv6鏈路類型和模型
3.6.1點到點鏈路上的IPv6
3.6.2共享媒介上的IPv6
3.6.3鏈路編址
3.6.4鏈路類型的橋接
3.7移動IP
3.7.1監測網絡附接
3.7.2基於主機的移動IP
3.7.3基於網絡的移動IP
3.8IP安全性
3.8.1安全協議
3.8.2安全關聯
3.8.3密鑰管理
3.8.4密碼學算法
3.8.5MOBIKE
3.9應用編程接口
3.9.1套接字API
3.9.2地址組無感知API
3.9.3IP地址字麵文本和的資源標識符
3.9.4“幸福的眼球”
3.10IPv6對其他協議的隱含意義
3.10.1傳輸層協議
3.10.2域名係統
3.10.3應用
3.10.4互聯網路由
3.10.5管理信息庫
3.11確認和認證
3.11.1測試套件
3.11.2IPv6就緒標誌
3.12IPv6分組流的例子
3.12.1以太網上的IPv6
3.12.2采用DNS和TCP的IPv6
3.13本章小結
參考文獻
第4章3GPP網絡中的IPv6
4.1PDN連接服務
4.1.1載波概念
4.1.2PDP和PDN類型
4.1.33GPP中的鏈路模型
4.2端用戶IPv6服務對3GPP係統的影響
4.2.1用戶、控製和傳輸平麵
4.2.2受到影響的聯網單元
4.2.3計費和計賬
4.2.4外部PDN接入和(S)Gi接口
4.2.5漫遊挑戰
4.3端用戶IPv6服務對GTP和PMIPv6協議的影響
4.3.1GTP控製平麵版本1
4.3.2GTP控製平麵版本2
4.3.3GTP用戶平麵
4.3.4PMIPv6
4.4IP地址指派、配置和管理
4.4.1尋址假定
4.4.2無狀態IPv6地址自動分配
4.4.3有狀態IPv6地址配置
4.4.4延遲的地址分配
4.4.5靜態IPv6尋址
4.4.6IPv6前綴委派
4.4.7NAS協議信令和CP選項
4.4.8帶有IPv4和IPv6地址配置的初始EUTRAN附接例子
4.5載波建立和迴退場景
4.5.1初始連接建立
4.5.2與較早期發行版本的後嚮兼容能力
4.5.3雙地址載波標誌
4.5.4在一個PGW中被請求PDN類型的處理
4.5.5迴退場景和規則
4.5.6RAT間切換和SGSN間路由區域更新
4.6信令接口
4.6.1IPv6作為傳輸層
4.6.2信息元素層次中的IPv6
4.7用戶設備特定考慮
4.7.1IPv6和被影響的層
4.7.2主機UE所必須支持的RFC
4.7.3DNS問題
4.7.4就緒提供
4.7.5IPv6栓鏈法
4.7.6IPv6應用支持
4.8組播
4.9已知的IPv6問題和異常
4.9.1IPv6鄰居發現考慮
4.9.2PDN連接模型和多個IPv6前綴
4.10IPv6特定的安全考慮
4.10.1IPv6尋址威脅
4.10.2IPv6跳安全
4.10.3IPv6擴展首部被非法利用
4.11本章小結
參考文獻
第5章3GPP網絡的IPv6過渡機製
5.1過渡機製的誘因
5.2技術概述
5.2.1轉換
5.2.2封裝
5.2.3網狀網絡或星形網絡
5.2.4可擴展性的考慮
5.3過渡工具箱
5.3.1未包含在內的過渡方案
5.3.2雙棧
5.3.3NAT64和DNS64
5.3.4464XLAT
5.3.5主機中的隆塊
5.3.6地址和端口號映射
5.3.7其他隧道技術或基於翻譯的過渡機製
5.43GPP的過渡場景
5.4.1過渡場景演進
5.4.2雙棧
5.4.3純IPv6
5.4.4雙重轉換
5.5過渡對3GPP架構的影響
5.5.1過渡對支撐基礎設施的影響
5.5.2IP網絡支持係統
5.5.3依據IP能力對用戶分類的工具
5.5.4轉換的隱含意義
5.5.5在傳輸平麵中對過渡的支持
5.5.6漫遊
5.5.7延遲過渡到IPv6産生的影響
5.6過渡到IPv6
5.6.1應用開發人員的過渡計劃
5.6.2電話廠商的過渡計劃
5.6.3網絡運營商的過渡檢查單
5.7本章小結
參考文獻
第6章IPv6在3GPP網絡中的未來
6.1基於IPv6的流量卸載解決方案
6.1.1蜂窩網絡中的動機
6.1.2基於IPv6卸載方法的優勢
6.1.3IP友好的卸載解決方案
6.1.4結論性的注釋
6.2演進3GPP載波支持多前綴和下一跳路由器
6.2.1背景和動機
6.2.2多前綴載波解決方案建議
6.2.3整體影響分析
6.2.4開放問題和未來工作
6.3LTE作為傢庭網絡的上行鏈路接入
6.3.1IETF下的Home
6.3.2Home和3GPP架構
6.3.3其他3GPP部署選項
6.4端口控製協議
6.4.1部署場景
6.4.2協議特徵
6.4.3PCP服務器發現
6.4.4協議消息
6.4.5級聯的NAT
6.4.6與IPv6過渡的關係
6.5物聯網
6.5.1典型用例
6.5.2研究IoT的標準化組織
6.5.33GPP觀點的IoT域
6.5.4對UE的隱含意義
6.5.5對3GPP網絡的隱含意義
6.6本章小結
參考文獻
附錄
附錄A本書術語釋義
附錄B縮略語中英文對照錶

作者介紹


文摘


序言



IPv6 in 3GPP Networks: Evolving from 2G to LTE and Future Mobile Broadband Introduction The rapid growth of mobile devices and data consumption has placed immense pressure on existing IPv4 infrastructure. The limited address space of IPv4, coupled with its inherent complexities, necessitates a transition to IPv6 to support the ever-expanding landscape of mobile broadband. This book delves into the comprehensive deployment of IPv6 within 3GPP networks, charting a course from the foundational 2G era through the advanced capabilities of LTE and into the realm of future mobile broadband technologies. It provides a detailed examination of the technical challenges, strategic considerations, and practical implementation aspects involved in seamlessly integrating IPv6 into the complex architecture of mobile communication systems. The Need for IPv6 in Mobile Networks The evolution of mobile networks from 2G to 5G and beyond is characterized by an exponential increase in connected devices and data traffic. While 2G networks primarily focused on voice and basic data services, 3G and 4G (LTE) introduced richer multimedia experiences, and the advent of 5G promises a hyper-connected world supporting IoT, autonomous vehicles, and immersive technologies. This data explosion has stretched the capabilities of IPv4 to its breaking point. IPv4's 32-bit address space, providing approximately 4.3 billion unique addresses, has proven insufficient to cater to the growing demand. Techniques like Network Address Translation (NAT) have been employed to conserve IPv4 addresses, but NAT introduces complexity, breaks end-to-end connectivity, and hinders the development of certain applications. The limitations of NAT become particularly apparent in mobile environments where dynamic IP addressing and the need for seamless roaming are critical. IPv6, with its vastly larger 128-bit address space, offers an almost inexhaustible supply of unique addresses. This abundance eliminates the need for NAT in most scenarios, restoring end-to-end connectivity and simplifying network management. Furthermore, IPv6 incorporates several architectural improvements over IPv4, including simplified header formats, improved support for mobility, and enhanced security features, making it a natural and essential successor for mobile network infrastructure. IPv6 Deployment Challenges and Strategies Deploying IPv6 in a live mobile network is a complex undertaking that requires careful planning and execution. The transition is not simply a matter of enabling a protocol; it involves a paradigm shift in network architecture, addressing schemes, and operational procedures. 1. Coexistence and Transition Mechanisms: A key challenge in IPv6 deployment is the need for seamless coexistence with existing IPv4 networks during the transition period. Mobile operators cannot simply switch off IPv4 overnight; a robust strategy for dual-stack operation (running both IPv4 and IPv6 simultaneously) is crucial. The book explores various transition mechanisms, including: Dual Stack: This is the most common approach, where devices and network elements support both IPv4 and IPv6 protocols. This allows for gradual migration and ensures backward compatibility. Tunneling: Techniques like 6to4, ISATAP, and Teredo enable IPv6 packets to be encapsulated within IPv4 packets for transmission over IPv4-only networks. This is particularly useful for connecting IPv6 islands over an IPv4 infrastructure. Translation: Protocols like NAT64 and DNS64 facilitate communication between IPv6-only clients and IPv4-only servers. This allows IPv6 devices to access the vast amount of content and services still available on the IPv4 internet. The book provides detailed explanations of how these mechanisms are implemented and managed within 3GPP networks, considering the unique requirements of mobile connectivity, such as mobility management and Quality of Service (QoS). 2. Addressing and Numbering Plans: The vastness of the IPv6 address space offers flexibility but also requires careful consideration of addressing and numbering plans. Mobile operators need to develop strategies for allocating IPv6 addresses to User Equipment (UE), network elements, and internal services. This includes: GUA (Global Unicast Address) Assignment: Determining how UEs obtain their global IPv6 addresses, often through SLAAC (Stateless Address Autoconfiguration) or DHCPv6 (Dynamic Host Configuration Protocol for IPv6). ULA (Unique Local Address) Usage: Leveraging ULAs for internal network communication to simplify management and avoid address exhaustion within the operator's private network. Prefix Delegation: The process by which network elements delegate IPv6 prefixes to downstream networks or devices. The book explores best practices for designing efficient and scalable IPv6 addressing schemes that support the dynamic nature of mobile networks. 3. Core Network Integration: Integrating IPv6 into the 3GPP core network is a multifaceted process. This involves adapting various network functions and protocols to support IPv6: IP Multimedia Subsystem (IMS): IMS, the architectural framework for delivering IP multimedia services, is inherently designed to support IPv6. The book details how IMS entities like the P-CSCF (Proxy-Call Session Control Function), S-CSCF (Serving-Call Session Control Function), and HSS (Home Subscriber Server) are adapted for IPv6. Packet Core Evolution (SGSN/GGSN to SGW/PGW): The transition from 2G/3G packet core components (SGSN/GGSN) to 4G/5G components (SGW/PGW) has been a significant step in facilitating IPv6 deployment. The book examines the IPv6 capabilities of these evolved elements. Mobility Management: Mobile devices are constantly moving, requiring robust mobility management. IPv6 offers improved support for mobility through features like Mobile IPv6. The book discusses how these features are integrated into the 3GPP architecture. Charging and Billing: Adapting charging and billing systems to handle IPv6 traffic is crucial. This involves ensuring that charging records accurately reflect IPv6 usage and that billing systems can process the associated data. 4. Radio Access Network (RAN) Considerations: While the core network is central to IPv6 deployment, the Radio Access Network (RAN) also plays a vital role. The book addresses: UE IPv6 Support: Ensuring that UE devices are compliant with IPv6 standards and can effectively communicate over the network. RAN Element IPv6 Capability: Verifying that base stations (eNodeBs in LTE, gNBs in 5G) and other RAN components can handle IPv6 traffic. Interworking with IPv4: Managing the seamless interworking between IPv6 and IPv4 traffic at the RAN level. 5. Security Aspects of IPv6 Deployment: While IPv6 offers enhanced security features, its deployment also introduces new security considerations. The book provides a comprehensive overview of IPv6 security, including: IPsec Integration: The mandatory support for IPsec in IPv6, which provides authentication and encryption for IP packets. Firewalling and Access Control: Implementing appropriate firewall rules and access control lists for IPv6 traffic. SLAAC Security: Addressing potential security vulnerabilities associated with stateless autoconfiguration. Threats and Vulnerabilities: Identifying and mitigating potential threats and vulnerabilities specific to IPv6 networks. Evolution from 2G to LTE and Future Mobile Broadband The book traces the evolution of IPv6 deployment across different generations of mobile technology: 2G Era: While 2G networks were primarily IPv4-centric, the groundwork for IP-based services was laid. The challenges and limitations of IPv4 in 2G are discussed as a prelude to the IPv6 imperative. 3G Evolution: 3G introduced more data-intensive services, highlighting the growing need for a more scalable addressing solution. Early IPv6 experiments and integration efforts in 3G networks are examined. LTE Deployment: The widespread adoption of LTE has been a major catalyst for IPv6 deployment. The book details the architectural changes in LTE that facilitate IPv6, such as the separation of control and user planes and the evolved packet core. It discusses the successful strategies employed by operators to migrate to dual-stack LTE networks. Future Mobile Broadband (5G and Beyond): 5G networks are designed with IPv6 as a fundamental pillar. The book explores how IPv6 underpins key 5G features like network slicing, massive IoT, and enhanced mobile broadband, and anticipates the challenges and opportunities of IPv6 in future mobile communication paradigms. Operational and Management Aspects Beyond the technical implementation, the book emphasizes the importance of operational and management considerations for successful IPv6 deployment: Network Monitoring and Troubleshooting: Developing tools and techniques for monitoring IPv6 network performance and troubleshooting issues. Device Management: Managing the lifecycle of devices, including their IPv6 configurations. Inter-Operator Roaming: Ensuring seamless IPv6 roaming between different mobile operators. Automation and Orchestration: Leveraging automation and orchestration tools to manage complex IPv6 deployments. Conclusion The transition to IPv6 is not merely a technical upgrade; it is a strategic imperative for mobile operators to future-proof their networks, unlock new revenue streams, and deliver the ever-increasing demands of mobile broadband users. This book provides a comprehensive, in-depth guide to navigating the complexities of IPv6 deployment in 3GPP networks. By understanding the challenges, adopting effective strategies, and embracing the evolution of mobile technologies, operators can successfully transition to an IPv6-enabled future, paving the way for a more connected and innovative mobile world.

用戶評價

評分

這本書的厚度令人印象深刻,這通常意味著內容密度極高,沒有一句廢話。我傾嚮於認為,一本好的技術書籍,其價值不在於篇幅的短小,而在於其知識的“不可替代性”。在這個技術迭代速度快到令人窒息的時代,能夠係統性地總結某一特定領域(如移動寬帶中的IPv6部署)演進曆程和關鍵挑戰的書籍,就顯得尤為珍貴。我期望它能深入剖析移動IP技術在應對海量物聯網設備接入時可能遇到的地址空間和管理難題,這恰恰是當前業界熱議的焦點。如果書中能對5G及未來6G的願景下,IPv6如何繼續演化,提供一些富有洞察力的預測和技術前瞻,那就更值迴票價瞭。這類書籍是技術人員保持知識“保鮮度”的必需品,而不是快餐式的學習資料,它需要被時間反復檢驗。

評分

從這本書的標題結構來看,它似乎是在試圖打通一個跨越多個時代的技術壁壘——從老舊的2G/3G架構如何平滑過渡到高度依賴IP化的LTE和未來的移動寬帶環境。這種“演進”的視角是極其重要的,因為在現實世界中,網絡升級很少是推倒重來,更多的是復雜的共存和漸進替換。我非常關注它如何處理IPv4到IPv6的地址轉換和雙棧部署的復雜性。例如,在網絡側如何優化SCTP/Diameter協議棧在IPv6環境下的性能,或者在用戶麵如何保障漫遊時的連接連續性等關鍵問題,這些都是在實際項目中容易被忽視但至關重要的細節。一本書如果能清晰地梳理齣這些曆史遺留問題和前瞻性解決方案之間的邏輯聯係,那麼它就不僅僅是一本技術手冊,而是一部移動通信協議演進的編年史,對於理解整個行業的發展軌跡具有不可估量的參考價值。

評分

這本書的排版風格透露齣一種老派的學術嚴謹性,頁邊距適中,關鍵術語和公式都有特彆的處理,這對於需要反復查閱和交叉引用的技術文檔來說至關重要。我注意到它在章節的組織上似乎采用瞭某種邏輯遞進的結構,從基礎的IP協議原理到在不同代際網絡(2G/3G的過渡時期)中的兼容性處理,再到LTE環境下IPv6的特定隧道機製和地址分配策略,層層深入,脈絡分明。這種結構安排,極大地方便瞭讀者進行係統性的知識構建。在我過去閱讀的技術書籍中,很多都是零散地介紹技術點,導緻知識體係不夠完整,而這本書顯然在這方麵下瞭大功夫,試圖構建一個完整的知識地圖。對於我們這些需要嚮管理層匯報技術路綫圖的人來說,擁有這樣一本條理清晰的參考書,無疑能極大地提升溝通的效率和準確性,因為它不僅告訴你“是什麼”,更重要的是解釋瞭“為什麼是這樣”以及“如何實現”。

評分

這本書的封麵設計得相當專業,那種深邃的藍色調配上清晰的字體,一下子就給人一種嚴謹、技術性很強的感覺。我記得當時在書店裏翻到它,光是標題那一長串“3GPP網絡中的IPv6部署:從2G嚮LTE及未來移動寬帶的演進”就已經足夠吸引我瞭,畢竟在移動通信領域摸爬滾打多年,深知協議棧演進的重要性。這本書的裝幀質量也令人滿意,紙張厚實,印刷清晰,很適閤經常翻閱和做筆記的工程師。那種沉甸甸的手感,仿佛預示著裏麵蘊含的知識重量。雖然我還沒來得及深入研讀每一個章節的技術細節,但僅從這第一印象來看,它無疑是為那些緻力於下一代移動網絡架構設計和實施的專業人士量身打造的精品。它不像一些泛泛而談的入門讀物,而是直指核心技術痛點,從曆史的脈絡過渡到前沿的實踐,這種定位非常精準,讓人對接下來要探索的內容充滿瞭期待,希望它能提供真正具有指導意義的實戰經驗,而非僅僅是理論的堆砌。

評分

初次接觸這本書的作者名字——尤尼·高亨,雖然名字略顯陌生,但從其著作的專業深度來看,想必是領域內的資深專傢。這種由一綫實踐者撰寫的技術書籍,往往比純理論研究的成果更接地氣、更具可操作性。我特彆欣賞這種將宏大敘事與微觀操作相結閤的寫作手法。例如,在探討網絡功能虛擬化(NFV)與IPv6融閤的章節時,期望能看到一些關於如何在實際運營商網絡中進行Pilot項目部署的案例分析,而不是停留在RFC的文字解讀上。這種對“實戰細節”的關注,是區分優秀技術書籍與平庸之作的關鍵分水嶺。如果這本書能提供一些代碼片段或者配置示例的思路,那就更完美瞭,因為在網絡工程領域,光靠文字描述是無法完全掌握精髓的,真正掌握技術需要動手實踐的參照物。這本書給我的感覺是,它試圖成為技術人員在麵臨大規模網絡升級時的“幕後軍師”。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有