編輯推薦
《黎曼幾何》非常值得一讀。
內容簡介
The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。
The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature). A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature. Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5. In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss. This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。
內頁插圖
目錄
Preface to the first edition
Preface to the second edition
Preface to the English edition
How to use this book
CHAPTER 0-DIFFERENTIABLE MANIFOLDS
1. Introduction
2. Differentiable manifolds;tangent space
3. Immersions and embeddings;examples
4. Other examples of manifolds,Orientation
5. Vector fields; brackets,Topology of manifolds
CHAPTER 1-RIEMANNIAN METRICS
1. Introduction
2. Riemannian Metrics
CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS
1. Introduction
2. Affine connections
3. Riemannian connections
CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS
1.Introduction
2.The geodesic flow
3.Minimizing properties ofgeodesics
4.Convex neighborhoods
CHAPTER 4-CURVATURE
1.Introduction
2.Curvature
3.Sectional curvature
4.Ricci curvature and 8calar curvature
5.Tensors 0n Riemannian manifoids
CHAPTER 5-JACOBI FIELDS
1.Introduction
2.The Jacobi equation
3.Conjugate points
CHAPTER 6-ISOMETRIC IMMERSl0NS
1.Introduction.
2.The second fundamental form
3.The fundarnental equations
CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS
1.Introduction.
2.Complete manifolds;Hopf-Rinow Theorem.
3.The Theorem of Hadamazd.
CHAPTER 8-SPACES 0F CONSTANT CURVATURE
1.Introduction
2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.
3.Hyperbolic space
4.Space forms
5.Isometries ofthe hyperbolic space;Theorem ofLiouville
CHAPTER 9一VARIATl0NS 0F ENERGY
1.Introduction.
2.Formulas for the first and second variations of enezgy
3.The theorems of Bonnet—Myers and of Synge-WeipJtein
CHAPTER 10-THE RAUCH COMPARISON THEOREM
1.Introduction
2.Ttle Theorem of Rauch.
3.Applications of the Index Lemma to immersions
4.Focal points and an extension of Rauch’s Theorem
CHAPTER 11—THE MORSE lNDEX THEOREM
1.Introduction
2.The Index Theorem
CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE
1.Introduction
2.Existence of closed geodesics
CHAPTER 13-THE SPHERE THEOREM
References
Index
前言/序言
黎曼幾何 [Riemannian Geometry] 下載 mobi epub pdf txt 電子書 格式
評分
☆☆☆☆☆
?………………………………………………
評分
☆☆☆☆☆
挺好的,下次有需要還是選擇京東~~~
評分
☆☆☆☆☆
非常好,不錯不錯。。。
評分
☆☆☆☆☆
書保存不好…書是好書,內容安排都很好
評分
☆☆☆☆☆
The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。
評分
☆☆☆☆☆
很好的一本書,就是有點老瞭
評分
☆☆☆☆☆
等待是最優雅的姿勢,但這並非意味著人喪失主動選擇的能力。我們之於以往行為感到閤理也有自我解釋的因素在裏麵——它原本有理由更加閤理。對比大陸和颱灣的六七十年代,實不能說哪一個社會環境更高壓。個人在大環境下不一定就是浮遊生物。他可以逆流而上。至少八十年代的李敖,那時他也處望五之年,就在黨外創辦雜誌。每月齣一期,一期十萬字,全部自己包辦。
評分
☆☆☆☆☆
..
評分
☆☆☆☆☆
好書。。。。