濛特卡羅統計方法(第2版)(英文版) [Monte Carlo Statistical Methods 2nd ed]

濛特卡羅統計方法(第2版)(英文版) [Monte Carlo Statistical Methods 2nd ed] pdf epub mobi txt 電子書 下載 2025

[法] 羅伯特 著
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510005114
版次:2
商品編碼:10104499
包裝:平裝
外文名稱:Monte Carlo Statistical Methods 2nd ed
開本:16開
齣版時間:2009-10-01
用紙:膠版紙
頁數:645
正文語種:英語

具體描述

內容簡介

  It is a tribute to our profession that a textbook that was current in 1999 is starting to feel old. The work for the first edition of Monte Carlo Statistical Methods (MCSM1) was finished in late 1998, and the advances made since then, as well as our level of understanding of Monte Carlo methods, have grown a great deal. Moreover, two other things have happened. Topics that just made it into MCSM1 with the briefest treatment (for example, perfect sampling) have now attained a level of importance that necessitates a much more thorough treatment. Secondly, some other methods have not withstood the test of time or, perhaps, have not yet been fully developed, and now receive a more appropriate treatment.
  When we worked on MCSM1 in the mid-to-late 90s, MCMC algorithms were already heavily used, and the flow of publications on this topic was atsuch a high level that the picture was not only rapidly changing, but also necessarily incomplete. Thus, the process that we followed in MCSM1 was that of someone who was thrown into the ocean and was trying to grab onto the biggest and most seemingly useful objects while trying to separate the flotsam from the jetsam. Nonetheless, we also felt that the fundamentals of many of these algorithms were clear enough to be covered at the textbook alevel, so we" swam on.

作者簡介

作者:(法國)羅伯特(ChristianP.Robert)(法國)GeorgeCasella

內頁插圖

目錄

Preface to the Second Edition
Preface to the First Edition
1 Introduction
1.1 Statistical Models
1.2 Likelihood Methods
1.3 Bayesian Methods
1.4 Deterministic Numerical Methods
1.4.1 Optimization
1.4.2 Integration
1.4.3 Comparison
1.5 Problems
1.6 Notes
1.6.1 Prior Distributions
1.6.2 Bootstrap Methods

2 Random Variable Generation
2.1 Introduction
2.1.1 Uniform Simulation
2.1.2 The Inverse Transform
2.1.3 Alternatives
2.1.4 Optimal Algorithms
2.2 General Transformation Methods
2.3 Accept-Reject Methods
2.3.1 The Fundamental Theorem of Simulation
2.3.2 The Accept-Reject Algorithm
2.4 Envelope Accept-Reject Methods
2.4.1 The Squeeze Principle
2.4.2 Log-Concave Densities
2.5 Problems
2.6 Notes
2.6.1 The Kiss Generator
2.6.2 Quasi-Monte Carlo Methods
2.6.3 Mixture RepresentatiOnS

3 Monte Carlo Integration
3.1 IntroduCtion
3.2 Classical Monte Carlo Integration
3.3 Importance Sampling
3.3.1 Principles
3.3.2 Finite Variance Estimators
3.3.3 Comparing Importance Sampling with Accept-Reject
3.4 Laplace Approximations
3.5 Problems
3.6 Notes
3.6.1 Large Deviations Techniques
3.6.2 The Saddlepoint Approximation

4 Controling Monte Carlo Variance
4.1 Monitoring Variation with the CLT
4.1.1 Univariate Monitoring
4.1.2 Multivariate Monitoring
4.2 Rao-Blackwellization
4.3 Riemann Approximations
4.4 Acceleration Methods
4.4.1 Antithetic Variables
4.4.2 Contr01 Variates
4.5 Problems
4.6 Notes
4.6.1 Monitoring Importance Sampling Convergence
4.6.2 Accept-Reject with Loose Bounds
4.6.3 Partitioning

5 Monte Carlo Optimization
5.1 Introduction
5.2 Stochastic Exploration
5.2.1 A Basic Solution
5.2.2 Gradient Methods
5.2.3 Simulated Annealing
5.2.4 Prior Feedback
5.3 Stochastic Approximation
5.3.1 Missing Data Models and Demarginalization
5.3.2 Thc EM Algorithm
5.3.3 Monte Carlo EM
5.3.4 EM Standard Errors
5.4 Problems
5.5 Notes
5.5.1 Variations on EM
5.5.2 Neural Networks
5.5.3 The Robbins-Monro procedure
5.5.4 Monte Carlo Approximation

6 Markov Chains
6.1 Essentials for MCMC
6.2 Basic Notions
6.3 Irreducibility,Atoms,and Small Sets
6.3.1 Irreducibility
6.3.2 Atoms and Small Sets
6.3.3 Cycles and Aperiodicity
6.4 Transience and Recurrence
6.4.1 Classification of Irreducible Chains
6.4.2 Criteria for Recurrence
6.4.3 Harris Recurrence
6.5 Invariant Measures
6.5.1 Stationary Chains
6.5.2 Kac’s Theorem
6.5.3 Reversibility and the Detailed Balance Condition
6.6 Ergodicity and Convergence
6.611 Ergodicity
6.6.2 Geometric Convergence
6.6.3 Uniform Ergodicity
6.7 Limit Theorems
6.7.1 Ergodic Theorems
6.7.2 Central Limit Theorems
6.8 Problems
6.9 Notes
6.9.1 Dri允Conditions
6.9.2 Eaton’S Admissibility Condition
6.9.3 Alternative Convergence Conditions
6.9.4 Mixing Conditions and Central Limit Theorems
6.9.5 Covariance in Markov Chains

7 The Metropolis-Hastings Algorithm
7.1 The MCMC Principle
7.2 Monte Carlo Methods Based on Markov Chains
7.3 The Metropolis-Hastings algorithm
7.3.1 Definition
7.3.2 Convergence Properties
7.4 The Independent Metropolis-Hastings Algorithm
7.4.1 Fixed Proposals
7.4.2 A Metropolis-Hastings Version of ARS
7.5 Random walks
7.6 Optimization and Contr01
7.6.1 Optimizing the Acceptance Rate
7.6.2 Conditioning and Accelerations
7.6.3 Adaptive Schemes
7.7 Problems
7.8 Nores
7.8.1 Background of the Metropolis Algorithm
7.8.2 Geometric Convergence of Metropolis-Hastings Algorithms
7.8.3 A Reinterpretation of Simulated Annealing
7.8.4 RCference Acceptance Rates
7.8.5 Langevin Algorithms

8 The Slice Sampler
8.1 Another Look at the Fundamental Theorem
8.2 The General Slice Sampler
8.3 Convergence Properties of the Slice Sampler
8.4 Problems
8.5 Notes
8.5.1 Dealing with Di伍cult Slices

9 The Two-Stage Gibbs Sampler
9.1 A General Class of Two-Stage Algorithms
9.1.1 From Slice Sampling to Gibbs Sampling
9.1.2 Definition
9.1.3 Back to the Slice Sampler
9.1.4 The Hammersley-Clifford Theorem
9.2 Fundamental Properties
9.2.1 Probabilistic Structures
9.2.2 Reversible and Interleaving Chains
9.2.3 The Duality Principle
9.3 Monotone Covariance and Rao-Btackwellization
9.4 The EM-Gibbs Connection
9.5 Transition
9.6 Problems
9.7 Notes
9.7.1 Inference for Mixtures
9.7.2 ARCH Models

10 The Multi-Stage Gibbs Sampler
10.1 Basic Derivations
10.1.1 Definition
10.1.2 Completion
……
11 Variable Dimension Models and Reversible Jump Algorithms
12 Diagnosing Convergence
13 Perfect Sampling
14 Iterated and Sequential Importance Sampling
A Probability Distributions
B Notation
References
Index of Names
Index of Subjects

前言/序言

  He sat,continuing to look down the nave,when suddenly the solution to the problem just seemed to present itself.It was so simple,SO obvious he just started to laugh——P.C.Doherty.Satan in St Marys
  Monte Carlo statistical methods,particularly those based on Markov chains,have now matured to be part of the standard set of techniques used by statisticians.This book is intended to bring these techniques into the classroom. being(we hope)a self-contained logical development of the subject,with all concepts being explained in detail.and all theorems.etc.having detailed proofs.There is also an abundance of examples and problems,relating the concepts with statistical practice and enhancing primarily the application of simulation techniques to statistical problems of various difficulties.
  This iS a textbook intended for a second-year graduate course.We do not assume that the reader has any familiarity with Monte Carlo techniques (such as random variable generation)or with any Markov chain theory. We do assume that the reader has had a first course in statistical theory at the level of Statistica!Inference bY Casella and Berger(1990).Unfortunately,a few times throughout the book a somewhat more advanced notion iS needed.We have kept these incidents to a minimum and have posted warnings when they occur.While this iS a book on simulation.whose actual implementation must be processed through a computer,no requirement lS made on programming skills or computing abilities:algorithms are presented in a program-like format but in plain text rather than in a specific programming language.(Most of the examples in the book were actually implemented in C.with the S-Plus graphical interface.)

用戶評價

評分

挺好的,下次有需要還是選擇京東~~~

評分

書收到瞭,很新很滿意。當當物流效率很高,商品狀態很新,正版無疑。趁著活動屯的數學名著,性價比超高,放在書架裏有空就翻翻,瞭解科技前沿。

評分

紅紅火火恍恍惚惚紅紅火火

評分

好書好書,好好學習。。。

評分

這是一本關於金融數學方麵的書籍,我非常喜歡。金融數學(Financial Mathematics),又稱分析金融學、數理金融學、數學金融學,是20世紀80年代末、90年代初興起的數學與金融學的交叉學科。金融數學主要運用現代數學理論和方法(如:隨機分析、隨機最優控製、組閤分析、非綫性分析、多元統計分析、數學規劃、現代計算方法等)對金融(除銀行功能之外,還包括投資、債券、基金、股票、期貨、期權等金融工具和市場)的理論和實踐進行數量的分析研究。其核心問題是不確定條件下的最優投資策略的選擇理論和資産的定價理論。套利,最優和均衡是其中三個主要概念。近二十幾年來,金融數學不僅對金融工具的創新和對金融市場的有效運作産生直接的影響,而且對公司的投資決策和對研究開發項目的評估(如實物期權)以及在金融機構的風險管理中得到廣泛應用。金融與數學的結閤越來越引起國際金融界和數學界的關注。金融數學也已經開始在我國得到瞭越來越廣泛的重視。所以更應鼓勵數學係學生去考經濟金融研究生;增加經濟和金融專業數學內容(而不是減少),鼓勵專傢學者“下海”,以形成高素質的新型企業傢、銀行傢集團,為我國的金融體製改革,以及我國金融市場與國際金融市場接軌、參與國際金融市場競爭,做齣應有的貢獻。

評分

可以

評分

挺好的,有用,學習中

評分

還不錯,比想象的輕一點,畢竟是影印版嘛。總體挺滿意的,雖然看不太懂。不錯!

評分

買瞭備著,英文的書看起來還是有點吃力,要是有翻譯版就行瞭

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有