内容简介
     It is a tribute to our profession that a textbook that was current in 1999 is starting to feel old. The work for the first edition of Monte Carlo Statistical Methods (MCSM1) was finished in late 1998, and the advances made since then, as well as our level of understanding of Monte Carlo methods, have grown a great deal. Moreover, two other things have happened. Topics that just made it into MCSM1 with the briefest treatment (for example, perfect sampling) have now attained a level of importance that necessitates a much more thorough treatment. Secondly, some other methods have not withstood the test of time or, perhaps, have not yet been fully developed, and now receive a more appropriate treatment.
  When we worked on MCSM1 in the mid-to-late 90s, MCMC algorithms were already heavily used, and the flow of publications on this topic was atsuch a high level that the picture was not only rapidly changing, but also  necessarily incomplete. Thus, the process that we followed in MCSM1 was that of someone who was thrown into the ocean and was trying to grab onto the biggest and most seemingly useful objects while trying to separate the flotsam from the jetsam. Nonetheless, we also felt that the fundamentals of many of these algorithms were clear enough to be covered at the textbook alevel, so we" swam on.     
作者简介
       作者:(法国)罗伯特(ChristianP.Robert)(法国)GeorgeCasella     
内页插图
          目录
   Preface to the Second Edition
Preface to the First Edition
1 Introduction
1.1 Statistical Models
1.2 Likelihood Methods
1.3 Bayesian Methods
1.4 Deterministic Numerical Methods
1.4.1 Optimization
1.4.2 Integration
1.4.3 Comparison
1.5 Problems
1.6 Notes
1.6.1 Prior Distributions
1.6.2 Bootstrap Methods
2 Random Variable Generation
2.1 Introduction
2.1.1 Uniform Simulation
2.1.2 The Inverse Transform
2.1.3 Alternatives
2.1.4 Optimal Algorithms
2.2 General Transformation Methods
2.3 Accept-Reject Methods
2.3.1 The Fundamental Theorem of Simulation
2.3.2 The Accept-Reject Algorithm
2.4 Envelope Accept-Reject Methods
2.4.1 The Squeeze Principle
2.4.2 Log-Concave Densities
2.5 Problems
2.6 Notes
2.6.1 The Kiss Generator
2.6.2 Quasi-Monte Carlo Methods
2.6.3 Mixture RepresentatiOnS
3 Monte Carlo Integration
3.1 IntroduCtion
3.2 Classical Monte Carlo Integration
3.3 Importance Sampling
3.3.1 Principles
3.3.2 Finite Variance Estimators
3.3.3 Comparing Importance Sampling with Accept-Reject
3.4 Laplace Approximations
3.5 Problems
3.6 Notes
3.6.1 Large Deviations Techniques
3.6.2 The Saddlepoint Approximation
4 Controling Monte Carlo Variance
4.1 Monitoring Variation with the CLT
4.1.1 Univariate Monitoring
4.1.2 Multivariate Monitoring
4.2 Rao-Blackwellization
4.3 Riemann Approximations
4.4 Acceleration Methods
4.4.1 Antithetic Variables
4.4.2 Contr01 Variates
4.5 Problems
4.6 Notes
4.6.1 Monitoring Importance Sampling Convergence
4.6.2 Accept-Reject with Loose Bounds
4.6.3 Partitioning
5 Monte Carlo Optimization
5.1 Introduction
5.2 Stochastic Exploration
5.2.1 A Basic Solution
5.2.2 Gradient Methods
5.2.3 Simulated Annealing
5.2.4 Prior Feedback
5.3 Stochastic Approximation
5.3.1 Missing Data Models and Demarginalization
5.3.2 Thc EM Algorithm
5.3.3 Monte Carlo EM
5.3.4 EM Standard Errors
5.4 Problems
5.5 Notes
5.5.1 Variations on EM
5.5.2 Neural Networks
5.5.3 The Robbins-Monro procedure
5.5.4 Monte Carlo Approximation
6 Markov Chains
6.1 Essentials for MCMC
6.2 Basic Notions
6.3 Irreducibility,Atoms,and Small Sets
6.3.1 Irreducibility
6.3.2 Atoms and Small Sets
6.3.3 Cycles and Aperiodicity
6.4 Transience and Recurrence
6.4.1 Classification of Irreducible Chains
6.4.2 Criteria for Recurrence
6.4.3 Harris Recurrence
6.5 Invariant Measures
6.5.1 Stationary Chains
6.5.2 Kac’s Theorem
6.5.3 Reversibility and the Detailed Balance Condition
6.6 Ergodicity and Convergence
6.611 Ergodicity
6.6.2 Geometric Convergence
6.6.3 Uniform Ergodicity
6.7 Limit Theorems
6.7.1 Ergodic Theorems
6.7.2 Central Limit Theorems
6.8 Problems
6.9 Notes
6.9.1 Dri允Conditions
6.9.2 Eaton’S Admissibility Condition
6.9.3 Alternative Convergence Conditions
6.9.4 Mixing Conditions and Central Limit Theorems
6.9.5 Covariance in Markov Chains
7 The Metropolis-Hastings Algorithm
7.1 The MCMC Principle
7.2 Monte Carlo Methods Based on Markov Chains
7.3 The Metropolis-Hastings algorithm
7.3.1 Definition
7.3.2 Convergence Properties
7.4 The Independent Metropolis-Hastings Algorithm
7.4.1 Fixed Proposals
7.4.2 A Metropolis-Hastings Version of ARS
7.5 Random walks
7.6 Optimization and Contr01
7.6.1 Optimizing the Acceptance Rate
7.6.2 Conditioning and Accelerations
7.6.3 Adaptive Schemes
7.7 Problems
7.8 Nores
7.8.1 Background of the Metropolis Algorithm
7.8.2 Geometric Convergence of Metropolis-Hastings Algorithms
7.8.3 A Reinterpretation of Simulated Annealing
7.8.4 RCference Acceptance Rates
7.8.5 Langevin Algorithms
8 The Slice Sampler
8.1 Another Look at the Fundamental Theorem
8.2 The General Slice Sampler
8.3 Convergence Properties of the Slice Sampler
8.4 Problems
8.5 Notes
8.5.1 Dealing with Di伍cult Slices
9 The Two-Stage Gibbs Sampler
9.1 A General Class of Two-Stage Algorithms
9.1.1 From Slice Sampling to Gibbs Sampling
9.1.2 Definition
9.1.3 Back to the Slice Sampler
9.1.4 The Hammersley-Clifford Theorem
9.2 Fundamental Properties
9.2.1 Probabilistic Structures
9.2.2 Reversible and Interleaving Chains
9.2.3 The Duality Principle
9.3 Monotone Covariance and Rao-Btackwellization
9.4 The EM-Gibbs Connection
9.5 Transition
9.6 Problems
9.7 Notes
9.7.1 Inference for Mixtures
9.7.2 ARCH Models
10 The Multi-Stage Gibbs Sampler
10.1 Basic Derivations
10.1.1 Definition
10.1.2 Completion
……
11 Variable Dimension Models and Reversible Jump Algorithms
12 Diagnosing Convergence
13 Perfect Sampling
14 Iterated and Sequential Importance Sampling
A Probability Distributions
B Notation
References
Index of Names
Index of Subjects      
前言/序言
     He sat,continuing to look down the nave,when suddenly the solution to the problem just seemed to present itself.It was so simple,SO obvious he just started to laugh——P.C.Doherty.Satan in St Marys
  Monte Carlo statistical methods,particularly those based on Markov chains,have now matured to be part of the standard set of techniques used by statisticians.This book is intended to bring these techniques into the classroom. being(we hope)a self-contained logical development of the subject,with all concepts being explained in detail.and all theorems.etc.having detailed proofs.There is also an abundance of examples and problems,relating the concepts with statistical practice and enhancing primarily the application of simulation techniques to statistical problems of various difficulties.
  This iS a textbook intended for a second-year graduate course.We do not assume that the reader has any familiarity with Monte Carlo techniques (such as random variable generation)or with any Markov chain theory. We do assume that the reader has had a first course in statistical theory at the level of Statistica!Inference bY Casella and Berger(1990).Unfortunately,a few times throughout the book a somewhat more advanced notion iS needed.We have kept these incidents to a minimum and have posted warnings when they occur.While this iS a book on simulation.whose actual implementation must be processed through a computer,no requirement lS made on programming skills or computing abilities:algorithms are presented in a program-like format but in plain text rather than in a specific programming language.(Most of the examples in the book were actually implemented in C.with the S-Plus graphical interface.)    
				
 
				
				
					《随机过程与应用分析》  导论:理解随机性在现代科学中的核心地位  在当代科学、工程、金融乃至社会科学的研究领域中,我们越来越频繁地面临着由复杂系统、不确定性数据和高维空间带来的挑战。许多实际问题无法通过精确的解析方法求解,转而依赖于对随机现象的模拟、估计与推断。本书《随机过程与应用分析》正是为了填补这一知识空白而精心编撰的教材与参考书。它旨在为读者构建一个坚实的概率论和随机过程理论基础,并深入探讨如何将这些理论应用于解决现实世界中的复杂问题。  本书的视角着重于从随机过程(Stochastic Processes)的宏观结构出发,而非仅仅停留在单次随机试验的分析层面。我们认为,理解系统随时间演化或状态空间变化的内在规律,是进行有效预测和决策的关键。  第一部分:概率论与随机变量的深度重构  本书的开篇并非简单重复基础概率论的公式堆砌,而是侧重于从测度论的角度对概率空间进行严谨的数学构建,为后续随机过程的学习打下坚实的理论基石。  第1章:概率论的严谨基础与测度论视角  本章首先回顾了概率、随机变量和期望的定义,但核心在于引入$sigma$-代数、可测函数以及勒贝格积分的概念。我们探讨了随机变量的分类(离散、连续及混合型)及其概率分布函数的性质。重点讲解了收敛概念在概率论中的重要性,包括依概率收敛(Convergence in Probability)、依分布收敛(Convergence in Distribution)和几乎必然收敛(Almost Sure Convergence),并详细分析了它们的相互关系和应用场景。  第2章:多维随机变量与联合分布的复杂结构  本章深入分析了多维随机向量的性质。除了传统的联合概率密度函数(PDF)和联合累积分布函数(CDF),我们着重讨论了边缘分布的推导以及条件期望的构造。条件期望被视为在给定信息下的最佳无偏估计器,我们在本章中建立了其数学形式。此外,独立性检验、协方差矩阵的结构分析,以及正态分布在二维和高维空间中的特殊地位,都将得到详尽的阐述。  第3章:大数定律与中心极限定理的现代解释  作为概率论的基石,本章对两大定律进行了深入探讨。我们不仅展示了伯努利大数定律和柯尔莫哥洛夫大数定律的证明思想,还详细区分了弱大数定律和强大数定律的适用条件。在中心极限定理部分,我们超越了经典的正态近似,引入了高阶矩近似(如Edgeworth展开)的概念,以更好地评估近似误差,这对于需要高精度估计的工程应用至关重要。  第二部分:随机过程的动力学分析  这是本书的核心部分,关注系统随时间演化的随机规律。我们根据过程的性质(如时间是否连续、状态空间是否离散)进行系统分类讨论。  第4章:离散时间随机过程与鞅论基础  本章从离散时间序列(如时间步长固定的数据流)入手。我们引入了马尔可夫链(Markov Chains)的概念,详细分析了其转移概率矩阵、平稳分布(Stationary Distribution)的求解方法,以及不可约性、遍历性和状态分类(常返、瞬态)。随后,本书引入了鞅(Martingale)的概念,将其视为在信息不断增加下,期望值保持不变的公平过程。鞅的停止时间定理(Optional Stopping Theorem)将被用于金融定价中的无套利原则验证。  第5章:连续时间马尔可夫过程与泊松过程  本章将时间维度扩展到连续。我们重点研究连续时间马尔可夫链(CTMC),通过微分方程(如Kolmogorov前向和后向方程)来描述其演化。生成无穷小矩阵(Infinitesimal Generator)的构建是本章的理论重点。紧接着,我们对泊松过程进行了全面剖析,包括其到达间隔时间的指数分布特性、复合泊松过程的应用,以及它在事件计数模型中的核心地位。  第6章:布朗运动与随机微积分的引入  布朗运动(Wiener Process)是描述连续尺度随机现象的基石。本章详细介绍其增量独立性、平稳性、连续轨道特性。随后,我们将自然地过渡到随机微积分。我们详细阐述了伊藤积分(Itô Integral)的定义、构造及其重要性质,包括伊藤公式(Itô's Formula),这是将传统微积分工具应用于随机微分方程(SDEs)的桥梁。  第7章:随机微分方程(SDEs)及其解法  本章致力于应用随机微积分解决实际问题。我们考察了几种重要的SDE模型,如几何布朗运动(常用于股票价格建模)和Ornstein-Uhlenbeck过程。对于SDEs的求解,我们将侧重于数值近似方法,如欧拉-丸山法(Euler-Maruyama Method),并讨论其收敛性和误差分析,为计算机模拟做好准备。  第三部分:统计推断与应用分析  理论框架搭建完毕后,本书转向如何利用观测数据对随机过程进行估计和检验。  第8章:随机过程的估计与检验  本章讨论了基于观测序列对过程参数进行估计的方法。我们讨论了最大似然估计(MLE)在参数估计中的应用,特别是在隐马尔可夫模型(HMM)和高斯过程中的实现。此外,我们还将介绍如何构造检验统计量来判断过程是否保持平稳性或是否发生了结构性变化(Change Point Detection)。  第9章:时间序列分析中的平稳性与非平稳性模型  聚焦于经济学和信号处理领域,本章系统介绍了时间序列模型的建立。我们深入分析了自回归(AR)、移动平均(MA)及其组合模型 ARMA。对于非平稳序列,我们探讨了差分运算以实现平稳化,并介绍了GARCH族模型(如ARCH, GARCH)在波动性建模中的关键作用,这对于风险管理至关重要。  第10章:高维随机系统中的降维与近似方法  在面对复杂系统的多变量数据时,本章提供了强大的分析工具。我们讨论了主成分分析(PCA)在随机数据维度压缩中的应用。此外,我们还将引入卡尔曼滤波(Kalman Filtering),这是一种最优线性递归估计器,用于实时估计状态空间模型的隐藏状态,广泛应用于导航、控制和信号去噪。  总结  《随机过程与应用分析》力求在严谨的数学推导与广泛的实际应用之间找到最佳平衡点。本书不仅是概率论学习者的进阶指南,也是需要处理复杂动态系统和不确定性数据的工程师、金融分析师和数据科学家的必备参考工具。通过本书的学习,读者将能够熟练地建立随机模型,并利用先进的统计和计算方法对这些模型进行分析和求解。