緊黎曼麯麵 [Compact Riemann Surfaces]

緊黎曼麯麵 [Compact Riemann Surfaces] pdf epub mobi txt 電子書 下載 2025

[美] 納拉辛漢 著
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510027390
版次:1
商品編碼:10617607
包裝:平裝
外文名稱:Compact Riemann Surfaces
開本:16開
齣版時間:2010-09-01
用紙:膠版紙
頁數:120
正文語種:英文

具體描述

內容簡介

These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut fiir Mathematik of the Eidgen6ssische Technische Hochschule, Ziirich fromNovember, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. JiirgenMoser have encouraged me to write them up for inclusion in the series, published byBirkhnser, of notes of these courses at the ETH.
Dr. Albert Stadler produced detailed notes of the first part of this course, and veryintelligible class-room notes of the rest. Without this work of Dr. StUrdier, these noteswould not have been written. While I have changed some things (such as the proof ofthe Serre duality theorem, here done entirely in the spirit of Serres original paper), thepresent notes follow Dr. Stadlers fairly closely.

內頁插圖

目錄

1. algebraic functions
2. riemann surfaces
3. the sheaf of germs of holomorphic functions
4. the riemann surface of an algebraic function
5. sheaves
6. vector bundles, line bundles and divisors
7. finiteness theorems
8. the dolbeault isomorphism
9. weyls lemma and the serre duality theorem
10. the riemann-roch theorem and some applications
11. further properties of compact riemann surfaces
12. hypereuiptic curves and the canonical map
13. some geometry of curves in projective space
14. bilinear relations
15. the jacobian and abels theorem
16. the riemann theta function
17. the theta divisor
18. torellis theorem
19. riemanns theorem on the singularities of θ
references

前言/序言

  These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut fiir Mathematik of the Eidgen6ssische Technische Hochschule, Ziirich fromNovember, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. JiirgenMoser have encouraged me to write them up for inclusion in the series, published byBirkhnser, of notes of these courses at the ETH.
  Dr. Albert Stadler produced detailed notes of the first part of this course, and veryintelligible class-room notes of the rest. Without this work of Dr. StUrdier, these noteswould not have been written. While I have changed some things (such as the proof ofthe Serre duality theorem, here done entirely in the spirit of Serres original paper), thepresent notes follow Dr. Stadlers fairly closely.

用戶評價

評分

幾何類書籍,先看看。

評分

好書

評分

好書

評分

幾何類書籍,先看看。

評分

評分

幾何類書籍,先看看。

評分

評分

好書

評分

幾何類書籍,先看看。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有