內容簡介
華南理工大學高分子物理教研組的六位老師,《高分子物理(修訂版)》(復旦大學齣版社)的內容為基礎,參考國外有關教科書,編寫瞭這本英文版的《高分子物理導論》,供本科生雙語教學使用。
英語《高分子物理》教科書與漢語的《高分子物理》教科書相對應。
目錄
Chapter 1 STRUCTURE OF POLYMER CHAIN
1.1 Introduction
1.1.1 Introduction to Polymer Science
1.1.2 From Small Molecules to Big Molecules
1.1.3 Future Topics for Polymer Science
1.1.4 Maior Characteristics of Polymer Structure
1.1.5 Contents of Polymer Structure
1.2 Short—range Structure of Polymer Chain
1.2.1 The Chemical Composition of Repeating Units
1.2.2 Bonding Methods of Monomers
1.2.3 Branch and Cross.1iking of Polymer Chain
1.2.4 Sequential Structure of Copolymer
1.2.5 Configuration of Polymer Chain
1.3 Long—range Structure of Polymer Chain
1.3.1 Size and Shape of Polymer Chain
1.3.2 Internal Rotation and Conformation of Polymer Chain
1.3.3 Flexibility of Polymer Chain
1.3.4 Factors of Influence on Polymer Chain Flexibility
1.4 Conformation Statistics of Polymer Chain
1.4.1 Geometry Calculation of Average Square End—to—end Distance
1.4.2 Statistical Calculation of Average Square End—to—end Distance
1.4.3 Characteristics of Polymer Chain Flexibility
1.4.4 Radius of Gyration of Polymer Chain
1.4.5 Wormlike Chain
Chapter 2 CONDENSED STATE STRUCTURE OF POLYMERS
2.1 Van Der Waals Force and Hydrogen Bonding
2.1.1 Primary Bonds
2.1.2 Seconary—bond Forces
2.1.3 Intermolecular Forces and Physical Properties
2.2 Form and Structure of Crystalline Polymers
2.2.I Morphology of Crystalline Polymers
2.2.2 Conformation and Unit Cell of Crystalline Polymers
2.3 Structural Models of Polymers
2.3.1 Structural Models 0f Crystalline Polymers ?
2.3.2 Structural Model of Amorphous Polymers
2.4 Crystalline Processes of Crystalline Polymers
2.4.1 Structure and Abilitv 0f P01ymer:
2.4.2 Crystallization Process of Polymers
2.4.3 The Rate of Crystallization and Its Measurement Methods
2.4.4 The Avrami Equation
2.4.5 The Degree of Crystallinity
2.4.6 Experimental Determination of Crystallinit
2.5 Crystallization Thermodvnamics of Polymers
2.5.1 Melting Phenomena and the Melting Temperature
2.5.2 Theory of Melting Point Depression
2.5.3 Example Calculation of Melting Point Depression
2.5.4 Experimental T11ermodvllamic Parameters
2.5.5 Entropy of Melting
2.5.6 The Hoffman—Weeks Equilibrium Melting Temperature
2.5.7 Effect of Chemical Structure On the Melting Temperature
2.6 Oriented Structure of Polymers
2.6.1 The Production of Orientation in Syl~thetic Polymers
2.6.2 Deliberate Orien ration by Processing in the Solid State
2.6.3 Deliberate Orientation by Processing in the Fluid State
2.6.4 Cold Drawing and the Natural Draw Ratio
2.6.5 Oriented Polymers—models and Properties
2.6.6 Highly Oriented Polymers and Uhimate Moduli
2.7 Liquid—crystal Polymers
2.7.1 Introduction
2.7.2 Types of Mesophases for Small Molecules
2.7.3 Types of Liquid-crystal Polymers
2.7.4 The Processing of Liquid—crystal Polymers
2.7.5 The Properties and Applications of Liquid—crystal Polymers
2.8 Structure and Properties of Blending Polymers
2.8.1 Conditions for Polymer polymer Miscibility
2.8.2 Experimental Detection of Miscibilitv
2.8.3 C0mpatihilisation and Examples of Polymer Blends
2.8.4 Morphology
2.8.5 Properties and Applications
Chapter 3 PROPERTIES OF POLYMER SOLUTIONS
3.1 Dissolution of Polymers
3.1.1 Dissolution Process
3.1.2 Cohesive Energy Density and Thermodynamics for Polymer Dissolution
3.2 Thermodynamics of Polymer Solutions
3.2.1 The Ideal Solution
3.2.2 Statistical Thermodynamics of Mixing
3.2.3 Dilute Solutions
3.2.4 Values for the Flory-Huggins Parametery
3.2.5 A Worked Example for the Free Energy of Mixing
3.3 Semidilute Polymer Solutions
3.3.1 The Dilute to Semidilute Transition
3.3.2 Semidilute Regime Scaling Laws
3.3.3 The Correlation Length, in the Semidilute Solution
3.4 Concentrated Polymer Solutions
3.4.1 Plasticization of Polymers
3.4.2 Spinning Solutions
3.4.3 Gels
3.5 Polyelectrolyte Solutions
3.6 Miscibility of Polymer Blends
3.6.1 Phase Diagrams
3.6.2 Thermodynamics of Phase Separation
3.6.3 An Example Calculation: Molecular Weight Miscibility Limit
3.7 Hydrodynamics Properties of Polymer Solutions
3.7.1 The Diffusion of Polymer in Solutions
3.7.2 Viscose Flow of Polymer inSolutions
Chapter 4 MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION OF POLYMERS
4.1 Polymer Size and Shape
4.2 Molecular Weight Averages
4.3 Determination Methods of Molecular Weight
4.3.1 End-group Analyses
4.3.2 Osmotic Pressure
4.3.3 Light scattering
4.3.4 Flight Time
4.3.5 Viscometry
4.4 Determination Methods of Molecular Weight Distribution
4.4.1 Phase Separation and Fractionation
4.4.2 Gel Permeation Chromatography
Chapter 5 MOLECULAR CHAIN MOTION
5.1 Introduction to Molecular Chain Motion
5.1.1 Simple Mechanical Relationships and Their Concepts
5.1.2 Polymer Relaxation and Transition
5.1.3 Polymer Molecular Chain Relaxation and Transition
5.2 The Glass Transition
5.2.1 Introduction
5.2.2 Methods of Measuring Transitions in Polymers
5.2.3 Theories of the Glass Transition
5.2.4 Factors of Influenee Oil Glass Transition Temperature
5.3 Viscosity Flow of Polymer
5.3.1 Characteristics of Viscosity Flow
5.3.2 Measure of Shear Viscosity
5.3.3 Factors of Influence on Viscosity Flow Temperature
Chapter 6 MECHANICAL BEHAVLOUR OF POLYMERS
6.1 Mechanieal Behaviour of Amorphous and Crystalline Polymers
6.1.1 Basic Physical Quantities Describing Mechanical Behaviour
6.1.2 Several Common Terms of Mechanical Properties
6.1.3 Tensile Properties of Various Polymers
6.1.4 Yield of Polymms
6.1.5 Fracture and Theoretical Strength of Polymers
6.1.6 Factors Affecting the Actual Strength of Polymers
6.2 Mechanical Behaviour of Elastic Polymers
6.2.1 Application Temperature Range of Rubbers
6.2.2 Characteristics of Elasticity
6.2.3 Phenomenological Descriptions of Rubber Elasticity
6.2.4 Thermodynamic Analysis of Rubber Elasticitv
6.2.5 Statistieal Thermodynamics of Rubber Elasticity
6.2.6 Effects of the Structure of Cross—links and Networks on the Rubber E1asticitv
6.2.7 Internal Energy Effects on the Rubber Elasticity
6.2.8 Ultimate Properties of Rubber
6.3 Mechanical Relaxation of Polymers Viscoelasticity
6.3.1 Mechanical Relaxation Phenomenon of Polymers
6.3.2 Mechanieal Models for Viscoelasticity
6.3.3 The Relationship between Viscoelasticity and Time and Temperature Time—temperature Equivalence Principle
6.3.4 The Bohzmann Superposition Principle(BSP)
Chapter 7 ELECTRICAL AND OPTICAL PROPERTIES OF POLYMERS
7.1 Electrical Polarization and Die]ectric Constant of Polymers
7.1.1 Polarization of Dielectric Media in Electric Field
7.1.2 Interpreting Polarization Effect of Polymer from Molecular Level
7.1.3 Relation between Dielectric Constant and Molecular Polarizabilitv
7.1.4 The Dielectrie Constants of Polymers
7.2 Dieleetrie Loss of Polymers
7.2.1 Dielectric Relaxation and Dielectric Loss
7.2.2 Characterization of Dielectric Loss
7.2.3 Some Factors Effcting on Dielectric Relaxation and Dielectric Loss
7.2.4 Spectra of Dielectric Relaxation in Solid Polymers
7.3 Conduction in Polymers
7.3.1 Characterizatioll of Elec,tric Conduction
7.3.2 Conductive Characteristics of Polymers
7.3.3 Volunle Resistivity and Surface Resistivity
7.3.4 Dependence Relation between Conduction and Structure in Solid Polymer
7.3.5 Influence of Other Factors
7.4 Dielectric Breakdown of Polymers
7.4.1 Dielectric Breakdown and Dielectric Strength
7.4.2 Dielectric Breakdown Mechanisms of Polymer
7.5 Electrostatic Charge Phenomena on Polymer
7.6 Optical Properties of Polymers
7.6.1 Transpalency and Colourlessness
7.6.2 The Refractive Index
前言/序言
深入材料科學前沿:高分子科學的宏觀與微觀視角 本書旨在為緻力於探索高分子材料的結構、性能及其在現代科技中應用的讀者,提供一個全麵而深入的理論基礎與實驗視角。 本書不聚焦於特定教材的某一版本或特定教學大綱下的內容安排,而是立足於高分子科學這一交叉學科的廣闊圖景,係統梳理瞭從分子鏈的基本構象到宏觀材料特性之間錯綜復雜的聯係。 第一部分:高分子鏈的統計力學與結構基礎 本部分是理解一切高分子現象的基石。我們首先從統計物理學的角度齣發,審視單條高分子鏈在不同環境(如理想溶液、熔體)下的空間行為。 分子鏈的統計描述與熱力學: 詳細闡述瞭如何使用隨機遊走模型(Random Walk Model)來描述無相互作用鏈的統計特徵,例如均方末端距(Mean Square End-to-End Distance) $langle R^2
angle$ 的計算。引入瞭高斯鏈模型(Gaussian Chain Model)和更精確的齊默(Zimm)模型,探討瞭排除體積效應(Excluded Volume Effect)對鏈構象的影響,並用 Flory 記號 $
u$ 來錶徵這種膨脹程度。對鏈的熵彈性(Entropic Elasticity)進行瞭深入分析,解釋瞭橡膠在拉伸過程中恢復形變的微觀物理機製,這與理想高分子鏈的自由度變化緊密相關。 高分子溶液的熱力學: 重點分析瞭高分子鏈在溶劑中分散體係的熱力學穩定性。引入瞭 Flory-Huggins 理論,詳細推導瞭高分子鏈在溶劑中混閤的自由能變化 $Delta G_m$。通過判據 $chi$ 參數(Flory–Huggins Interaction Parameter)的討論,清晰界定瞭良溶劑、不良溶劑和貧溶劑(Theta Solvent)的物理意義及其對溶液粘度和相分離行為的決定性作用。對於聚閤電解質體係,則需要引入德拜-休剋爾(Debye-Hückel)理論的修正,以處理長程靜電相互作用。 鏈構象與動力學: 探討瞭分子鏈在時間尺度上的運動性。從基本鏇轉運動開始,引入瞭濛特卡羅(Monte Carlo)模擬方法來輔助理解復雜構象的形成。重點講解瞭鏈運動的鬆弛時間(Relaxation Time)概念,如詹尼-泰珀(Zimm)模型和德格恩(de Gennes)的 reptation 理論,後者尤其在描述高濃度聚閤物熔體中長鏈的擴散行為時至關重要。 第二部分:聚集態結構與形態學 高分子材料的宏觀性能主要由其在固態下的組織結構決定。本部分將聚焦於無規綫團與有序晶體之間的過渡形態。 結晶學原理: 闡述瞭高分子結晶的特殊性——與小分子晶體不同,高分子鏈必須發生摺疊(Folding)和搭接(Re-entanglement)纔能形成有序結構。詳細介紹瞭球晶(Spherulite)的形成過程,包括核化(Nucleation)和晶麵生長機製。討論瞭紮伊德爾(Ziegler-Natta)催化劑對聚烯烴結晶形態的影響,以及如何通過偏振光顯微鏡(POM)觀察雙摺射率和晶體取嚮。 玻璃化轉變(Glass Transition): 這是高分子材料最核心的性能指標之一。深入分析瞭自由體積理論(Free Volume Theory)和時間-溫度等效性原理(Time-Temperature Superposition Principle, TTSP)。詳細講解瞭威廉姆斯-蘭德爾-費裏(WLF)方程的推導與應用,用以預測材料在不同溫度下的動態粘彈性行為。通過差示掃描量熱法(DSC)和動態機械分析(DMA)等實驗手段,如何精確測定玻璃化轉變溫度 $T_g$ 及其對分子量和交聯度的依賴關係。 非晶態與半晶態結構: 討論瞭非晶高分子中短程有序(Short-Range Order)的存在性,如 X 射綫散射(SAXS/WAXS)在確定晶區尺寸和鏈段排列中的作用。分析瞭鏈纏結(Chain Entanglements)對熔體粘度和拉伸強度的影響,並引入瞭梅爾溫(Meltzer)模型來量化纏結密度。 第三部分:高分子形變、流變學與力學性能 本部分著眼於高分子材料如何響應外加的機械應力,並從時間依賴性的角度進行分析。 粘彈性理論: 區分瞭粘性(Viscous)和彈性(Elastic)行為,並引入瞭鬍剋定律和牛頓粘性定律在聚閤物體係中的推廣形式。詳細介紹瞭粘彈性本構方程,如 Maxwell 模型和 Kelvin-Voigt 模型,以及它們在描述瞬態和穩態響應中的適用性。重點分析瞭蠕變(Creep)和應力鬆弛(Stress Relaxation)實驗的物理含義。 流變學基礎: 講解瞭剪切速率、剪切應力與粘度之間的關係。對於聚閤物熔體,分析瞭剪切速率對錶觀粘度的影響(非牛頓流體行為),特彆是剪切變稀(Shear Thinning)現象,並引入瞭冪律模型(Power Law Model)進行擬閤。對於高分子溶液,則需要考慮剪切對鏈構象的影響,如在強剪切場下鏈的拉伸和取嚮。 力學性能的各嚮異性: 探討瞭高分子復閤材料和拉伸取嚮材料的各嚮異性力學特性。分析瞭楊氏模量、韌性(Toughness)和脆性(Brittleness)如何與分子量分布、結晶度以及取嚮度相關聯。引入瞭斷裂力學原理在高分子體係中的應用,如對裂紋萌生和擴展的微觀理解。 第四部分:界麵與宏觀應用導嚮 最後,本書將高分子科學的理論知識與實際應用場景相結閤,強調界麵作用和功能化設計。 錶麵與界麵現象: 討論瞭高分子材料與環境、填料或其他聚閤物之間的相互作用。重點分析瞭錶麵能對潤濕性、粘附力和薄膜形貌的影響。對於復閤材料,詳細闡述瞭界麵相容性(Interfacial Compatibility)對增強材料力學性能的關鍵作用,以及錶麵處理技術(如等離子體處理)如何改變界麵化學。 高分子凝聚態的特殊體係: 簡要介紹瞭液晶高分子(Liquid Crystalline Polymers)的結構特徵,即介於無定形和晶體之間的介晶相(Mesophase),及其在製造高強度縴維中的重要性。同時,也會涉及對電活性、光敏性高分子(如導電聚閤物或光刻膠)的初步介紹,這些體係的行為往往需要引入量子化學或半導體物理學的概念進行輔助理解。 總結: 本書通過係統化的結構安排,力求為讀者搭建起一座從微觀分子運動到宏觀工程應用之間的堅實橋梁。讀者在完成學習後,將能夠運用統計熱力學、動力學和連續介質力學的工具,對任何新型高分子材料的潛在行為進行閤理的預測和設計。