内容简介
《4G:LTE/LTE-Advanced 宽带移动通信技术(影印版)》基于获得巨大成功的书籍《3G演进-HSPA与LTE》,新版集中关注LTE和LTE-Advanced(Rl0),对LTE的关键技术和LTE标准做了全面的介绍,并对各种LTE技术详细解释其方法和采纳理由。本书清晰地阐明了各种LTE关键技术,并深入地解释了各种特定的LTE解决方案,因此,有助于读者理解在移动宽带产品和系统中如何实现和部署LTE。
包含了新增加到LTE无线接入标准和技术(包括3GPPR10)中的全部细节;
清晰地解释了支撑LTE的关键技术(包括OFDM和MIMO)的作用;
完整地涵盖了提交到国际电联无线通信组的LTE-Advanced关键技术(包括LTE载波聚合、扩展多天线传输、中继、异构网);
详细地阐释了LTE无线接口结构、物理层、接入过程、广播、射频特性和系统性能。
Erik Dahlman、Stefan Parkvall和Johan Skold都是爱立信研究院资深研究员,自3G研究的初始阶段就一直深入开展3G与4G技术的研发和标准化工作。他们是3G/4G领域的一流专家,目前仍积极为3GPPLTE的标准化工作做着突出的贡献。
内页插图
目录
Preface
Acknowledgements
Abbreviations and Acronyms
CHAPTER 1 Background of LTE
1.1 Introduction
1.2 Evolution of Mobile Systems Before LTE
1.2.1 The First 3G Standardization
1.3 ITU Activities
1.3.1 IMT-2000 and IMT-Advanced
1.3.2 Spectrum for IMT Systems
1.4 Drivers for LTE
1.5 Standardization of LTE
1.5.1 The Standardization Process
1.5.2 The 3GPP Process
1.5.3 The 3G Evolution to 4G
CHAPTER 2 High Data Rates in Mobile Communication
2.1 High Data Rates: Fundamental Constraints
2.1.1 High Data Rates in Noise-Limited Scenarios
2.1.2 Higher Data Rates in Interference-Limited Scenarios
2.2 Higher Data Rates Within a Limited Bandwidth: Higher-Order Modulation
2.2.1 Higher-Order Modulation in Combination with Channel Coding
2.2.2 Variations in Instantaneous Transmit Power
2.3 Wider Bandwidth Including Multi-Carrier Transmission
2.3.1 Multi-Carrier Transmission
CHAPTER 3 0FDM Transmission
3.1 Basic Principles of OFDM
3.2 OFDM Demodulation
3.3 OFDM Implementation Using IFFT/FFT Processing
3.4 Cyclic-prefix Insertion
3.5 Frequency-Domain Model of OFDM Transmission
3.6 Channel Estimation and Reference Symbols
3.7 Frequency Diversity with OFDM: Importance of Channel Coding
3.8 Selection of Basic OFDM Parameters
3.8.10FDM Subcarrier Spacing
3.8.2 Number of Subcarriers
3.8.3 Cyclic-Prefix Length
3.9 Variations in Instantaneous Transmission Power
3.10 OFDM as a User-Multiplexing and Multiple-Access Scheme
3.1 1 Multi-Cell Broadcast/Multicast Transmission and OFDM
CHAPTER 4 Wider-Band "Single-Carrier" Transmission
4.1 Equalization Against Radio-Channel Frequency Selectivity
4.1.1 Time-Domain Linear Equalization
4.1.2 Frequency-Domain Equalization
4.1.3 Other Equalizer Strategies
4.2 Uplink FDMA with Flexible Bandwidth Assignment
4.3 DFT-Spread OFDM
4.3.1 Basic Principles
4.3.2 DFTS-OFDM Receiver
4.3.3 User Multiplexing with DFTS-OFDM
4.3.4 Distributed DFFS-OFDM
CHAPTER 5 Multi-Antenna Techniques
5.1 Multi-Antenna Configurations
5.2 Benefits of Multi-Antenna Techniques
5.3 Multiple Receive Antennas
5.4 Multiple Transmit Antennas
5.4.1 Transmit-Antenna Diversity
5.4.2 Transmitter-Side Beam-Forming
5.5 Spatial Multiplexing
5.5.1 Basic Principles
5.5.2 Precoder-Based Spatial Multiplexing
5.5.3 Nonlinear Receiver Processing
CHAPTER 6 Scheduling, Link Adaptation, and Hybrid ARQ
6.1 Link Adaptation: Power and Rate Control
6.2 Channel-Dependent Scheduling
6.2.1 Downlink Scheduling
6.2.2 Uplink Scheduling
6.2.3 Link Adaptation and Channel-Dependent Scheduling in the Frequency Domain
6.2.4 Acquiring on Channel-State Information
6.2.5 Traffic Behavior and Scheduling
……
CHAPTER 7 LTE Radio Access: An Overview
CHAPTER 8 Radio-Interface Architecture.
CHAPTER 9 Physical Transmission Resources
CHAPTER 10 Downlink Physical-Layer Processing.
CHAPTER 11 Uplink Physical-Layer Processing.
CHAPTER 12 Retransmission Protocols.
CHAPTER 13 Power Control, Scheduling, and Interference Handling
CHAPTER 14 Access Procedures.
CHAPTER 15 MultimediaBroadcastJMulticast Services
CHAPTER 16 Relaying
CHAPTER 17 Spectrum and RF Characteristics
CHAPTER 18 Performance
CHAPTER 19 Other Wireless Communications Systems
CHAPTER 20 Final Thoughts
References
Index
精彩书摘
The work on LTE was initiated in late 2004 with the overall aim of providing a new radio-accesstechnology focusing on packet-switched data only. The first phase of the 3GPP work on LTE was todefine a set of performance and capability targets for LTE [10]. This included targets on peak datarates, user/system throughput, spectral efficiency, and control/user-plane latency. In addition, require-ments were also set on spectrum fiexibility, as well as on interaction/compatibility with other 3GPPradio-access technologies (GSM, WCDMAfHSPA, and TD-SCDMA).
Once the targets were set, 3GPP studies on the feasibility of different technical solutions consid-ered for LTE were followed by development of the detailed specifications. The first release of theLTE specifications, release 8, was completed in the spring of 2008 and commercial network operationbegan in late 2009. Release 8 has then been followed by additional LTE releases, introducing addi-tional functionality and capabilities in different areas, as illustrated in Figure.
7.1.In parallel to the development of LTE, there has also been an evolution of the overall 3GPPnetwork architecture, termed System Architecture Evolution (SAE), including both the radio-accessnetwork and the core network. Requirements were also set on the architecture evolution, leading toa new flat radio-access-network architecture with a single type of node, the eNodeBl, as well as a newcore-network architecture. An excellent descnption of the LTE-associated core-network architecture,the Evolved Packet Core (EPC), can be found in [9].
The remaining part of this chapter provides an overview of LTE up to and including release 10.The most important technologies used by LTE release 8 - including transmission schemes, schedul-ing, multi-antenna support, and spectrum flexibility - are covered, as well as the additional featuresintroduced in LTE releases 9 and 10. The chapter can either be read on its own to get a high-leveloverview of LTE, or as an introduction to the subsequent chapters.
The following chapters, Chapters 8-18, then contain a detailed description of the LTE radio-accesstechnology. Chapter 8 provides an overview of the LTE protocol structure, including RLC, MAC, andthe physical layer, explaining the logical and physical channels, and the related data flow. The time-frequency structure on which LTE is based is covered in Chapter 9, followed by a detailed descriptionof the physical layer for downlink and uplink transmission in Chapters 10 and 11 respectively. Chapter12 contains a description of the retransmission mechanisms used in LTE, followed by a discussion onpower control, scheduling, and interference management in Chapter 13. Access procedures, necessaryfor a terminal to connect to the network, are the topic of Chapter 14. Chapter 15 covers the multi-cast/broadcast functionality of LTE and Chapter 16 describes relaying operation. Chapter 17 addresseshow radio-frequency (RF) requirements are defined in LTE, taking into account the spectrum flexibility.Finally, Chapter 18 contains an assessment of the system performance of LTE.
……
前言/序言
4G:LTE/LTE-Advanced 宽带移动通信技术(影印版) [4G LTE/LTE-Advanced for Mobile Broadband] 下载 mobi epub pdf txt 电子书 格式
4G:LTE/LTE-Advanced 宽带移动通信技术(影印版) [4G LTE/LTE-Advanced for Mobile Broadband] 下载 mobi pdf epub txt 电子书 格式 2024
4G:LTE/LTE-Advanced 宽带移动通信技术(影印版) [4G LTE/LTE-Advanced for Mobile Broadband] 下载 mobi epub pdf 电子书
4G:LTE/LTE-Advanced 宽带移动通信技术(影印版) [4G LTE/LTE-Advanced for Mobile Broadband] mobi epub pdf txt 电子书 格式下载 2024